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PREFACE 

THIS  book  forms  the  second  part  of  an  introductory 
course  of  Mechanics  for  schoolboys.  To  add  to  the 

number  of  text-books  on  Dynamics  calls  for  apology,  or  at 
least  for  an  indication  that  the  guiding  principles  differ  to 
some  extent  from  those  usually  followed ;  hence  a  brief 
statement  of  the  point  of  view  adopted  may  be  advisable. 

The  ordinary  deductive  treatment  of  kinetics,  starting 

from  Newton's  Laws  as  axioms,  though  satisfactory  for 
mature  minds,  has  proved  ill-suited  to  young  boys.  Inductive 
methods  appeal  to  them  with  much  greater  force,  and  it 
seems  advisable  that  their  attention  should  be  concentrated 

at  first  on  simple  quantitative  experiments  and  the  develop- 
ment of  the  fundamental  principles  of  mechanics  from  their 

results. 

These  principles  involve  ideas  so  difficult  and  so  un- 
familiar that  it  is  highly  inexpedient  to  develop  them  by 

means  of  mathematical  processes  which  are  too  recently 
acquired  to  be  instinctive.  Even  if  practice  in  the  appli- 

cation of  such  processes  is  the  real  object  in  teaching 
mechanics,  the  final  result  will  be  better  if  the  mathematics 
used  in  the  early  stages  is  limited  to  arithmetic  and  very 
simple  numerical  trigonometry  or  geometry.  Methods  which 
are  more  explicitly  mathematical  may  be  introduced  when 
the  pupil  has  advanced  some  distance  on  these  lines,  and  he 
will  then  be  in  a  position  to  appreciate  their  generality  and 
their  advantages  as  labour-saving  devices.  At  a  later  stage, 
of  course,  he  can  make  no  progress  without  the  use  of  formal 
mathematics,  but  it  is  desirable  that  he  should  retain  even 
then  the  habit  of  realising  the  mechanical  meaning  of  each 
step  in  the  manipulation  of  the  symbols.    To  quote  Thomson 
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and  Tait,  "  Nothing  can  be  more  fatal  to  progress  than  a  too 
confident  reliance  on  mathematical  symbols ;  for  the  student 
is  only  too  apt  to  take  the  easier  course,  and  consider  the 

formula  and  not  the/ac^  as  the  physical  reality." 
This  numerical  work  in  no  way  saves  a  boy  from  the 

necessity  of  thinking ;  in  fact,  the  refusal  to  supply  him  with 
formulae  and  standard  methods  forces  him  to  trust  to  his 

own  powers,  and  reveals  to  him,  as  well  as  to  his  teacher, 
any  failure  in  comprehension.  With  this  object,  numerical 
examples  have  been  interspersed  throughout  the  text; 
questions  involving  descriptions  have  been  kept  separate 
in  order  that  they  may  be  combined  as  desired  with  the 
numerical  questions.  The  introduction  of  more  general 
methods  is  deferred  almost  to  the  end  of  the  book,  so  that 
the  master  may  be  free  to  use  them  earlier  with  such  pupils 
as  are  ready  for  them,  without  detriment  to  those  who  are 
slower. 

The  course  is  designed  so  that  all  the  more  important 
experiments  can  be  performed  by  the  master  with  very  few 
pieces  of  apparatus  in  an  ordinary  mathematical  class-room  ; 
but  it  is  obviously  preferable  that  the  pupil  should  perform 
some  at  least  of  them.  A  few  details  of  suitable  apparatus 
are  given  in  an  appendix. 

In  order  to  instil  concrete  ideas  of  mass,  work,  energy, 
momentum,  etc.,  many  of  the  illustrations  have  been  drawn 
from  simple  engineering  practice.  The  modern  boy  is  keenly 
interested  in  such  machines  as  motor-bicycles  and  aeroplanes, 
and  is  sufficiently  familiar  with  them  on  their  qualitative 
side  not  to  require  elaborate  descriptions  of  their  mode  of 
action ;  his  sense  of  power  is  greatly  increased  when  he  finds 
that  his  study  of  mechanics  enables  him  to  get  even  approxi- 

mate values  for  their  performances.  The  policy  of  rejfusing 
to  touch  anything  until  it  can  be  dealt  with  completely  may 
commend  itself  to  the  cautious  teacher,  but  it  is  very 
cramping  to  the  growing  mind ;  for  example,  it  appears 
preferable  to  give  a  broad  idea  of  the  principles  underlying 
the   action   of  a  screw  propeller   and   a   rough    numerical 
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approximation  to  its  behaviour  under  given  conditions, 
rather  than  to  wait  until  some  future  mathematician  shall 

have  discovered  a  method  of  solving  the  problems  it  presents. 
When  the  boy  passes  from  the  class-room  to  the  larger  world 
he  will  find  that  progress  does  not  always  wait  until  the 
theory  is  complete,  and  it  is  a  good  thing  to  accustom  him 
early  to  use  such  knowledge  as  he  possesses  in  obtaining 
the  best  results  within  his  reach,  and  thus  to  realise  the 
desirability  of  further  knowledge  to  render  these  results 
more  trustworthy.  This  principle  has  been  widely  adopted 
in  the  teaching  of  elementg-ry  pure  mathematics,  and  there 
is  every  reason  for  extending  it  in  the  study  of  mechanics. 

There  is  a  large  number  of  text-books  on  elementary 
Applied  Mechanics,  written  for  students  of  Engineering, 
which  deal  in  this  manner  with  real  rather  than  academic 

problems,  but  many  teachers  feel  that  they  pay  so  little 
attention  to  logical  treatment  that  they  are  better  adapted 
to  technical  instruction  than  to  education;  a  serious  effort 
has  been  made  in  this  little  book  to  maintain  an  adequate 
standard  in  this  respect. 

In  the  elementary  treatment  of  a  subject  of  such 
antiquity,  plagiarism  is  inevitable  and  often  unconscious, 
and  its  due  acknowledgment  in  individual  cases  becomes 
impossible ;  but  the  author  is  under  an  especial  debt  of 
gratitude  to  his  colleagues  at  the  Royal  Naval  College, 
Dartmouth,  for  permission  to  draw  largely  on  their  ex- 

perience, and  on  the  store  of  examples  which  they  have 
made  for  their  own  use  ;  more  particularly  to  Mr  Portway, 
who  has  checked  the  answers  to  the  examples.  He  also 
wishes  to  express  his  acknowledgment  to  the  publishers  of 
Engineering  for  permission  to  reproduce  Figs.  73  and  78. 

C.  E.  A. 

Dartmouth, 

March,  1913. 



CONTENTS 

CHAP.  PAGE 

Preface          ........  v 

I.  Velocity    1 

II.  Effect  of  a  constant  force        ...  19 

III.  Mass  and  Weight    39 

IV.  Force  inclined  to  direction  of  motion     .  53 

V.  Work  and  Power    76 

VI.  Energy    108 

VII.  Momentum   -  141 

VIII.    Fluid  pressure  on  a  surface     .        .        .  170 

IX.      Motion  under  varying  forces    .        .        .  199 

Appendix  on  Apparatus    228 

Descriptive  Questions    231 

Answers  to  Examples    239 

Index    245 



CHAPTER    I 

VELOCITY 

1.  Suppose  we  have  a  rifle  weighing  7  lbs.,  which  fires  a 

bullet  weighing  1  oz.  at  a  velocity  of  2000  feet  per  second,  and 
we  wish  to  calculate  the  force  it  will  exert  on  a  shoulder  which 

yields  to  the  kick  through  a  distance  of  5  inches.  Or  suppose 

that  we  can  supply  steam  at  a  pressure  of  100  lbs,  per  square 
inch  to  the  cylinders  of  a  locomotive  (of  which  we  know  the  size 

of  every  part),  and  we  wish  to  calculate  how  long  it  will  take  to 

get  up  a  speed  of  40  miles  an  hour  when  it  starts  from  rest  and 
drags  a  train  weighing  100  tons  up  an  incline  of  1  in  150. 

These  are  examples  of  problems  in  Dynamics.  You  will  notice 
that  they  bring  in  various  quantities,  velocities,  lengths,  times, 

forces,  &c. ;  also  that  the  same  kind  of  quantity  may  be  expressed 

in  different  units,  as  velocity  in  ''feet  per  second"  or  "miles  an 

hour."  As  we  go  on  we  shall  find  that  all  the  quantities  we 
meet  with  can  be  referred  back  to  three  "fundamental"  ones, 
Length,  Time  and  Mass. 

In  Statics  we  were  not  concerned  with  Time  or  Mass  but 

only  with  lengths  and  forces;  we  treated  Force  as  a  fundamental 
quantity,  but  we  shall  see  that  Force  can  be  referred  back  to 

length,  time  and  mass  in  the  same  way  as  other  quantities.  So  it 

will  be  well  to  clear  the  ground  by  briefly  considering  these  three 
quantities. 

2.  Length.  Length  usually  comes  into  dynamics  as  the 

distance  through  which  a  body,  or  a  point  in  a  body,  moves  when 
A.  1 
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forces  act  on  it.  To  describe  the  movement  fully,  we  require  to 

know  its  starting  or  finishing  point,  as  well  as  the  distance  be- 
tween these  points,  and  its  direction.  As  everything  is  in  motion, 

including  the  earth  and  probably  the  solar  system,  we  really  have 

no  fixed  point  or  fixed  direction  in  space'«to  reckon  from,  but  in 
ordinary  life  we  treat  the  earth  as  a  fixed  body  and  it  is  con- 

venient to  do  so  in  dynamics,  except  when  we  deal  with  the 

motion  of  the  heavenly  bodies.  "For  simplicity  we  shall  at  first 
consider  only  the  case  of  bodies  which  do  not  rotate,  i.e.  which 
move  so  that  the  line  joining  any  two  points  in  the  body  remains 

parallel  to  itself  throughout  the  motion,  as  for  example  in  a  train 
running  along  a  straight  piece  of  line. 

Time.  Although  it  is  diflficult  to  give  a  definition  of  time, 

every  one  knows  what  is  meant  by  it ;  we  usually  measure  it  by 
a  watch  indicating  seconds  or  fifths  of  a  second.  Such  a  watch 

is  generally  regulated  so  that  it  shows  24  x  60  x  60  of  these 
seconds  between  noon  on  one  day  and  noon  on  the  next,  and  the 

seconds  are  then  called  "mean  solar  seconds";  if  we  regulated  it 
by  the  stars  instead  of  the  sun  the  seconds  would  be  very  slightly 

shorter ;  seconds  are  "  mean  solar  seconds  "  if  nothing  is  said  to 
the  contrary. 

But  we  often  have  to  measure  intervals  of  time  which  are 

shorter  than  a  fi^th  of  a  second ;  this  we  can  do  by  means  of  a 
vibrating  spring,  as  will  be  explained  in  Art.  4. 

Mass.  The  same  force  applied  to  diflferent  bodies  will  pro- 

duce different  results — you  can  for  example  discover  whether 
an  Qgg  is  empty  or  not  by  shaking  it  to  and  fro.  Every  body 

contains  a  certain  "quantity  of  matter";  this  phrase  may  have 
various  meanings,  but  in  dynamics  it  has  the  meaning  that  most 

people  would  give  to  it,  that  the  quantity  of  matter  in  a  body  is 
large  if  it  is  heavy,  and  small  if  it  is  light;  in  fact,  that  the 

quantities  of  matter  in  two  bodies  are  compared  by  their  weights, 

whatever  materials  they  are  made  of.  As  dynamics  deals  with 
the  effect  of  forces  on  bodies,   and  weight  is   a  force,   this  is 
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clearly  a  reasonable  way  of  comparing  "  quantities  of  matter  "  in 
dynamics ;  we  shall  discuss  later  some  other  ways  in  which  the 

quantity  of  matter  in  a  body  is  measured  for  other  purposes,  and 
shall  show  that  so  far  as  dynamics  is  concerned,  weight  is  the 

proper  basis  for  comparing  quantities  of  matter.  To  make  it 
clear  that  we  are  thinking  only  of  dynamics,  we  use  the  special 

name,  Mass^  for  "the  quantity  of  matter  in  a  body"  whenever 
we  have  to  deal  with  the  effect  of  forces  on  the  body. 

But  the  fact  that  the  weight  of  a  body  and  the  quantity  of 

matter  in  it  are  measured  in  the  same  way  leads  to  great  con- 
fusion between  them  in  the  mind  of  the  ordinary  person  ;  this 

confusion  is  not  very  harmful  in  everyday  life,  but  in  dynamics 
it  is  essential  to  bear  constantly  in  mind  the  fact  that  they  are 
entirely  different  quantities.  The  Mass  of  a  body  is  the  quantity 
of  stuff  in  a  body,  its  Weight  is  the  force  with  which  the  earth 
attracts  it.  Whenever  you  meet  with  the  word  Mass  you  should 

call  to  mind  this  distinction,  although  you  probably  will  not,  for 

some  time,  see  why  it  is  so  important. 

3.  Average  speed.  If  a  man  spends  an  hour  in  walking 

three  miles,  we  say  his  average  speed  has  been  three  miles  an 

hour ;  he  may  have  kept  on  walking  steadily  for  the  whole  time  at 
the  same  speed  of  three  miles  an  hour,  or  he  may  have  stopped 
somewhere  on  the  way  for  a  quarter  of  an  hour,  and  walked  the 
three  miles  in  the  remaining  three  quarters  of  an  hour,  during 

which  time  his  actual  speed  must  have  averaged  four  miles  an 

hour.  In  getting  an  average  speed  we  take  into  account  only 
the  total  distance  covered  and  the  total  time  occupied,  and  we 

divide  the  former  by  the  latter  to  get  the  numerical  value  of  the 
speed.  There  is  no  generally  accepted  unit  in  which  speeds  are 
expressed,  but  they  are  stated  in  miles  an  hour,  feet  per  second, 
&c.,  as  may  be  most  convenient.  For  example  the  speed  of  a 
train  or  motor  car  would  commonly  be  expressed  in  miles  per 

hour  or  kilometres  per  hour,  that  of  the  piston  of  a  steam-engine 
in  feet  per  second,  that  of  a  conductor  in  the  armature  of  a 

1—2 
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dynamo  in  centimetres  per  second. .  But  if  the  speed  of  a  body  is 

known  in  any  given  units  of  length  and  time,  it  is  easy  to 

calculate  what  it  will  be  when  expressed  in  any  other  units.  It 

should  also  be  noted  that  we  talk  of  a  train  going  at  an  average 

speed  of  30  miles  per  hour  even  if  it  has  not  travelled  for  a  whole 

hour;  for  example,  if  it  covers  10  miles  in  20  minutes. 

Ex.  1.  A  train  covers  88  feet  in  a  second  ;  what  is  its  average  speed  in 
miles  per  hour  ? 

If  it  kept  up  the  same  average  speed  for  an  hour,  it  would  go  60  x  60  times 

as  far,  that  is  60  x  60  x  88  feet,  or  — -—  miles,  or  60  miles  ;  so  its 17oU  X  o 

average  speed  is  60  miles  an  hour. 
This  fact,  that  60  miles  an  hour  is  the  same  speed  as  88  ft.  per  sec, 

occurs  so  often  in  calculations  about  speeds  of  trains,  &c.,  that  it  is  con- 
venient to  remember  it. 

Ex.  2.  In  |th  of  a  second  a  body  is  observed  to  move  through  1'4:  cm.; 
express  its  average  speed  in  cm.  per  sec,  and  in  feet  per  sec. 

As  before,  in  1  sec.  if  it  maintained  the  s^me  average  speed  it  would  go 

through  8  X  1'4  cm.,  or  11-2  cm. ;  and  since 
11-2  11'2 

1  in.  =  2-54  cm.,    11-2  cm.  =  --— :  ins.,  or   -_- — —  ft.,  or  -367  ft. 2*54  2*54  X  12 

So  its  average  speed  is  11  "2  cm.  per  sec.  or  "367  ft.  per  sec. 

Ex.  3.  Which  has  the  faster  average  speed,  a  pigeon  at  1600  yards  per 
minute  or  a  train  at  5b  miles  per  hour  ? 

Ex.  4.  A  motor  car  is  timed  over  220  yards  as  taking  22  sees.;  what  is 
its  speed  in  miles  per  hour  ?  Supposing  the  distance  may  be  4  yds.  wrong, 
and  the  time  |  sec  wrong,  between  what  limits  does  the  real  speed  lie  ? 

Ex.  6.  A  man  walks  \  mile  at  4  miles  per  hour,  waits  five  minutes  for 
a  train ;  travels  in  it  at  40  miles  per  hour  for  12  miles  ;  drives  at  10  miles 
per  hour  for  15  minutes.  Find  his  average  speed,  and  hence  find  whether 

he  would  do  the  whole  distance  more  quickly  in  a  motor  at  20  miles  per 
hour.  / 

Ex.  6.  In  four  successive  runs  over  a  measured  mile,  a  ship  covered 
the  distance  in  2  mins.  14  sees.,  2  mins.  30  sees.,  2  mins.  8  sees.,  and 
2  mins.  27  sees.  What  was  her  average  speed  in  miles  per  hour  for  each 
run  ?  What  was  the  average  speed  for  the  four  miles  ?  Is  this  latter  the 
same  result  as  you  get  by  finding  the  average  of  the  times  in  which  the 

mile  was  covered,  and  deducing  an  "average  speed"  from  that;  or  is  it  the 
average  of  the  speeds  for  the  different  miles  ? 
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Ex.  7.  A  gun  is  fired  at  you  from  a  fort  4  miles  off.  Taking  the  speed 
of  light  to  be  186,000  miles  a  sec,  the  speed  of  sound  to  be  1100  ft.  a  sec.,, 
and  the  average  speed  of  the  shot  to  be  1500  ft.  a  sec,  at  what  intervals  will 
the  flash,  the  report  of  the  gun,  and  the  shot  reach  you  ? 

4.    Measurement  of  small  intervals  of  time.    Example 

2  suggests  that  in  a  laboratory  we  can  measure  the  distance 

travelled  by  a  body  in  a  smaller  interval  of  time  than  is  recorded 
by  a  stop  watch  ;  we  will  now  explain  how  it  can  be  done. 

If  a  flat  steel  spring  is  clamped  at  one  end,  and  the  other  end 

is  pulled  aside  and  let  go,  the  spring  will  vibrate  for  some  little 
time.  The  vibrations  gradually  die  down,  the  distance  through 

which  the  end  of  the  spring  moves  getting  less  and  less,  but  the 

time  occupied  by  each  vibration  does  not  decrease.     This  "periodic 

Fig.  1. 

time"  of  the  spring,  as  it  is  called,  depends  on  the  length,  breadth 
and  thickness  of  the  spring  and  the  quality  of  the  steel,  but  does 

not  depend  on  the  size,  or  "  amplitude,"  of  the  oscillations,  pro- 
vided that  these  are  not  large.  This  statement  can  be  verified 

by  direct  counting  against  a  stop  watch  in  the  case  of  a  spring 
which  makes  3  or  4  vibrations  a  second.  But  it  requires  some 

practice  to  count  rapidly  enough,  even  at  this  speed,  and  the 
following  method  of  verifying  it  will  serve  as  an  introduction  to 
an  arrangement  of  apparatus  which  we  shall  often  use. 

We  shall  want  a  flat  strip  of  steel  about  two  feet  long, 

clamped  at  one  end  so  as  to  lie  horizontally,  with  its  edge  upwards, 

above  a  horizontal  surface  of" wood  or  iron  on  which  a  carriage  can 
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run  smoothly.  The  spring  carries  at  its  free  end  a  paint-brush 

which  lightly  touches  a  strip  of  paper  fixed  to  the  top  of  the 

carriage.  This  carriage  or  trolley  is  long  and  narrow — say  2  ft. 

by  3  ins.,  and  runs  on  three  or  four  small  wheels.  If  the  paint 
brush  is  filled  with  ink  and  the  carriage  is  pushed  along  while  the 

spring  is  at  rest,  a  straight  line  is  drawn  on  the  paper  strip ;  but 
if  the  spring  is  now  set  in  motion  and  the  carriage  is  slowly 

pushed  along,  we  get  a  wavy  line  which  in  future  we  shall 

call  a  "tracing,"  marked  on  tlie  paper,  see  Fig.  2.  If  the 
spring  is  started  with  fairly  large  vibrations,  and  the  carriage  is 

pushed  along  during  a  known  number  of  seconds  (fifteen  or 

twenty),  as  shown  by  a  watch,  the  number  of  vibrations  which 

the  spring  made  in  this  time  can  be  counted  at  leisure.  The 

experiment  is  repeated  with  the  spring  making  vibrations  of 
smaller  size,  and  the  number  of  vibrations  per  second  in  each 

Fig.  2. 

case  will  probably  be  found  to  be  nearly  the  same.  This  experi- 
ment also  gives  us  the  time  of  one  vibration  of  the  spring,  as 

accurately  as  we  are  likely  to  need  to  know  it  in  our  experiments. 

Suppose  for  convenience  that  the  spring  is  adjusted  so  that  it 

makes  5  vibrations  a  second ;  this  adjustment  can  be  made  by 

shortening  or  lengthening  the  part  of  the  spring  beyond  the  clamp. 

By  a  "  vibration "  we  shall  always  mean  a  complete  to-and-fro 
movement  of  the  spring,  so  the  time  of  one  vibration,  or  the 

periodic  time  of  the  spring,  means  the  time  that  elapses  between 
the  instant  when  the  brush  crosses  the  centre  line  and  the  instant 

when  it  crosses  it  again  moving  in  the  same  direction ;  so  the 

interval  between  consecutive  crossings  of  the  centre  line  is  half 

the  time  of  one  vibration.  It  is  always  better  to  reckon  by 
whole  vibrations,  since  it  is  not  then  of  great  importance 

that    the   centre   line   should    be   truly   central;    if    you    look 
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at  a  tracing  where  the   "centre  Une"  is  not  central  you  will 
understand  the  reason  for  this. 

So  by  measuring  the  length  along  the  centre  line  between 
alternate  points  of  crossing  of  the  wavy  line  (which  length  we 

will  call  "  one  wave-length ")  we  know  how  far  the  carriage 
travelled  during  that  fifth  of  a  second,  and  can  deduce  its  average 

speed  for  that  interval.  For  example,  in  Fig.  2  the  distance 

from  ̂   to  ̂   was  found  to  be  9-8  cm.,  so  the  average  speed  there 

was  jr-^  or  49  cm.  per  sec. 

This  method  can  be  applied  to  investigate  the  motion  of  a 

piston  (by  attaching  the  paper  strip  to  the  piston  rod)  or  of  a 

body  falling  under  its  own  weight  (by  letting  the  carriage  slip 
down  vertically  between  guides),  &c. 

5.  Uniform  speed.  It  is  a  common  expression,  that  a 

train  is  running  "at  a  uniform  Speed,"  and  you  probably  know 
what  you  mean  by  it,  but  would  not  find  it  easy  to  express  its 

meaning  precisely.  You  might  explain  it  by  saying  that  its 
speed  was  not  getting  faster  or  slower;  but  then  you  would  have 

to  explain  the  meaning  of  the  train's  speed  "at  an  instant,"  and 
that  also  would  be  difficult  to  do.  In  practice,  motor  cars  are 

provided  with  speedometers  which  mark  the  speed  at  any  instant, 
and  if  the  needle  remains  steady,  you  know  that  the  speed  is 

constant ;  but  these  do  not  help  us  to  a  definition,  though  they 

help  us  to  connect  the  sensation  of  a  certain  speed  with  its 
measure  in  miles  per  hour. 

Suppose  you  have  a  trolley  running  with  very  little  friction 
on  a  horizontal  plane,  and  give  it  a  sharp  push ;  it  will  seem 
to  move  with  fairly  uniforui  speed.  Arrange  a  spring  to  make  a 
tracing  on  it  as  it  runs  underneath,  and  find  the  average  speed 

during  an  early  and  a  late  vibration  of  the  spring,  by  measuring 
the  distance  travelled  in  one  vibration.  You  will  find  that  the 

average  speed  is  less  near  the  end  than  near  the  beginning  of  the 

motion,  so  the  speed  is  clearly  not  quite  uniform.     Next  raise  one 



8  Chapter  I 

end  of  the  plane,  and  get  a  tracing  on  the  trolley  after  it 

has  been  started  downhill  with  a  push  ;  you  will  probably  find 

that  the  average  speed  during  successive  vibrations  of  the  spring 

gradually  increases.  In  the  first  case  the  trolley  was  retarded 

by  friction,  in  the  second  the  slope  more^than  compensated  the 
friction. 

So  it  ought  to  be  possible  to  find  some  angle  of  slope  of  the 

plane  such  that  if  the  trolley  is  started  down  it,  the  average  speed 
does  not  change;  you  can  arrive  at  it  by  adjusting  the  slope  until 

the  trolley  just  goes  on  moving  down  when  started  gently,  and 
you  will  find  it  easier  to  judge  whether  the  speed  is  uniform  if 
the  speed  is  slow  than  if  it  is  fast.  When  you  are  satisfied  with 
the  result  as  judged  by  eye,  take  a  tracing  when  the  carriage  runs 

down  fairly  fast,  and  measure  the  average  speeds  during  two  or 
three  separate  vibrations,  at  the  beginning,  middle,  (tec,  of  the 
run ;  if  necessary,  further  adjust  the  slope  till  the  average  speed 
so  found  does  not  vary.  Whatever  our  definition,  it  is  fairly 

clear  that  this  must  be  uniform  speed,  so  we  will  choose  a  working 

definition  to  fit  this  method  of  testing  it,  as  follows :  "^  body  moves 
with  uniform  speed  if  its  average  speed  during  any  interval  is  the 

same."  This  interval  of  time  is  to  be  of  any  length  we  choose 
to  name,  and  to  begin  at  any  instant  during  the  motion.  This 
is  not  a  perfect  definition,  and  can  be  improved  later. 

A  possible,  if  rather  fanciful,  example  will  show  the  need  of 

trying  several  intervals  of  time  during  which  you  measure  the 
average  speed,  before  asserting  that  the  speed  is  uniform. 

Suppose  a  motor  travels  along  a  regularly  undulating  road, 

the  hills  being  all  the  same  height  and  distance  apart,  and  you 
take  as  your  interval  in  each  case  the  time  from  the  top  of  one 

hill  to  the  top  of  the  next.  Then  you  will  always  get  the  same 

value  for  the  average  speed,  but  the  speed  downhill  is  probably 
greater  than  that  uphill.  This  will  be  detected  by  changing  the 
interval,  and  timing  the  motor  from  the  top  to  the  bottom  of  a 

hill ;  if  by  no  such  changes  can  you  find  any  different  average 
speed,  you  are  justified  in  thinking  the  speed  is  uniform. 
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6.  Variable  speed.  Uniform  speed  is  very  exceptional 

in  practice;  bodies  in  motion  generally  vary  their  pace  every 
instant,  in  consequence  of  changes  in  the  conditions  under  which 
they  are  moving.  In  order  to  be  able  to  realise  at  a  glance 

how  a  body  has  moved,  it  is  convenient  to  represent  in  a 
diagram  the  successive  positions  of  the  body  at  various  instants 

of  its  motion.  You  are  probably  familiar  with  a  "  Distance-Time 

diagram  "  of  this  kind;  the  following  extract  from  Bradshaw  and 
the  distance-time  diagram  which  represents  it  graphically  will 
serve  as  an  illustration. 

Lengths  measured  horizontally  (called  "  abscissae  ")  represent 
times,  and  above  each  minute  so  marked  off  lengths  are  measured 

vertically  upwards  (called  "ordinates")  to  represent  on  a  suitable 
scale  the  distance  of  the  train  from  the  starting  point  at  the  end 

of  that  minute.  From  this  diagram  or  from  the  time-table  we  see 
that  in  the  first  five  minutes  it  travelled  IJ  miles,  so  its  average 

speed  was  12  x  IJorlS  miles  an  hour.  From  Acton  to  Ealing  (If 
miles)  took  5  minutes,  so  its  average  speed  then  was  12  x  If  or 

21  miles  an  hour.  It  will  be  seen  that  the  line  joining  A  to  ̂ 'is 
at  a  slightly  steeper  slope  than  that  joining  if.  ̂   to  CO;  and  that 
on  such  a  diagram  the  slope  of  the  line  joining  two  points  is 
steeper  the  greater  is  the  average  speed  between  them.  For  the 
gradient  of  the  line  is  measured  by  the  rise  in  a  unit  horizontal 

distance;  and  when  the  latter  represents  a  given  time  and  the 

former  the  distance  gone  in  the  time,  the  average  speed  (which  is 
the  distance  divided  by  the  time)  is  represented  by  this  gradient. 
Note,  however,  that  we  must  take  care  to  use,  not  the  actual 

lengths  on  the  diagram,  but  the  distances  or  times  which  these 

lengths  represent.  Thus  £JM  represents  If  miles  and  ̂ Jf  repre- 
sents   5  mins.,   and    the   average   velocity  is    expressed    by  the 

fraction  -nr>,  when  EM  and  AM  have  these  meaniners.     It  is 
AM  ° 

important  to  note  that  the  usual  way  of  stating  the  gradient  of  a 
road  or  railway  line  is  to  give  the  distance  measured  up  the  slope 
in  which  there  is  a  vertical  rise  of  one  unit  length ;  for  example, 
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Fig.  4  shows  a  road  with  a  gradient  of  1  in  5.  This  method  is 

obviously  the  most  convenient  for  a  surveyor,  who  can  measure 
distances  along  the  surface  of  the  road  with  a  chain. 

But  in  dealing  with  diagrams  or  graphs,  we  always  mean 

by  "gradient"  the  vertical  rise  of  the  curve  in  unit  horizontal 
distance;  thus,  the  gradient  of  /IT?  in  Fig.  5  is  ̂ -  or  2-5.  The 
numbers  20  and  8  are  not  usually  equal  to  the  actual  lengths  of 
the  lines  BM  and  AM,  but  are  the  values  of  certain  quantities 

represented  by  these  lines  on  the  scales  used  in  making  the 

diagram.  This  meaning  of  gradient  is  the  most  convenient  in 
the  case  of  graphs,  for  our  measurements  are. then  made  along 

the  edges  of  the  squares  of  the  squared  paper. 

Fig.  4 

It  should  also  be  noted  that  Fig.  3  only  gives  us  the  position 
of  the  train  at  certain  moments  ;  we  are  not  told  where  the  train 

is  at  any  other  times  than  those  marked  on  the  diagram,  and 

we  are  not  justified  in  drawing  a  smooth  curve  through  or  near 

to  these  points,  or  even  in  joining  the  points  by  straight  lines,  in 

order  to  represent  the  position  of  the  train  at  intermediate 

times.  As  a  matter  of  fact,  experience  of  trains  tells  us  that 

they  stop  in  each  station  for  some  time,  start  out  slowly,  gather 

speed  until  they  are  running  steadily  and  then  slow  down  for  the 

next  station.  We  could  indicate  this  roughly  on  the  diagram, 

but  we  should  need  to  know  a  great  deal  more  than  we  are  told 

by  Bradshaw  before  we  could  do  so  accurately ;  we  can  distinguish 
between  what  we  know  and  what  we  estimate  to  be  the  case  by 

putting  in  the  latter  as  a  dotted  line. 



12  Chapter  I 

Ex.  8. Draw  a  distance-time  diagram  for  the  following  time-table:— 

Miles 

0      Taunton    a.  4.6 

d.  4.13 

301    Exeter   a.  4.52  A  convenient  scale  is  1  inch  to  20  miles, 

d.  4.57  and  1  inch  to  20  mins. 
51      Newton  Abbot... a.  5.35 

d.  5.42 

82^    Plymouth       6.28 

Find  from  the  diagram  the  average  speed  between  stations  in  each  case, 

by  putting  in  straight  dotted  lines  &.&  AE  in  Fig.  3  above  and  finding  the 
distances  run  in  20  minutes. 

7.  Motion  of  a  carriage  running  freely  from  rest 

down  a  slope.  If  a  trolley  standing  on  an  inclined  plane  is 

released,  it  is  obvious  that  it  moves  with  an  increasing  velocity, 

and  it  looks  as  though  the  velocity  increases  smoothly  and  not  by 

M_^ 

Fig.  6. 

jerks.  Take  a  tracing  of  the  motion  as  before ;  it  is  convenient 

to  use  a  trigger  which  releases  the  trolley  when  it  is  hit  by  the 
spring  in  its  first  passage  across  the  centre  line,  for  then  the 
intervals  of  time  begin  from  the  instant  at  which  the  trolley 

starts  from  rest.     Fig.  6  represents  a  tracing  so  produced. 

The  periodic  time  of  the  spring  used  was  ̂ ^  second.  Measure- 

ment of  the  tracing  gave  the  following  values  in  cm. : — AB^  '7 ; 
AC,  2-7;  AD,  Q'l;  AE,  11-4;  AF,  17-8;  AG,  25-5;  AH,  34-7, 
&c.  These  results,  plotted  with  a  time-scale  of  1  inch  to  ̂ o  '^®^-' 
and  a  distance  scale  of  1  inch  to  5  cm.,  gives  the  diagram  of 
Fig.  7.  In  this  case  we  are  justified  in  drawing  a  smooth  curve 

through  the  observed  points  to  represent  intermediate  positions, 
as  we  saw  that  the  increase  of  speed  went  on  smoothly  ;  so  we 

can  deduce  with  some  certainty  that  after  an  interval  of  -36  sec. 
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from    the   start   the    trolley    had   travelled   over    9  cm.  and   so 
on. 

The  value  of  the  average  speed  during  any  interval  can  be 

found  as  before ;  e.g.  to  find  average  speed  during  the  third  tenth 
of  a  second  of  the  motion,  draw  the  chord  CD,  and  determine  its 

3*4 
gradient,  which  is  ̂ rr  or  34  cm.  per  sec.     Similarly  the  average 

speed  during  any  given  interval  of  time,  or  over  any  part  of  the 

"  run  "  can  be  determined  by  finding  the  gradient  of  the  chord 
joining  the  corresponding  points  on  the  curve.     For  example,  the 

average  speed  over  the  first  10  cm.  is  seen  to  be  ̂ ^-^  cm.  per  sec. 
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8.  Distance-time  diagram  for  uniform  speed.     In 

Art.  5  we  agreed  that  "  when  a  body  moves  with  uniform  speed, 

its  average  speed  during  any  interval  is  the  same."  If  this  is  so, 
the  gradient  of  every  chord  of  the  curve  must  be  the  same,  and 

this  can  only  be  the  case  if  the  "  curve  "  is  a  straight  line  having 
that  gradient;  so  the  distance-time  diagram  of  a  body  moving 
at  a  uniform  speed  is  a  straight  line. 

9.  Velocity  at  an  instant.  Take  a  trolley  on  a  plane 

sloped  at  such  an  angle  that  the  trolley  when  started  runs  down 
with  uniform  velocity,  as  described  on  page  8  ;  it  will  be  found 

that  if  this  is  the  case  for  one  speed  it  will  be  so  for  any  other 
speed.  Now  attach  a  thread  to  the  trolley,  pass  it  over  a  pulley 
at  the  lower  end  of  the  plane  so  that  the  thread  is  parallel  to  the 

plane,  and  hang  a  small  weight  to  the  thread.  When  the  trolley 
is  released,  the  weight  will  pull  it  down  the  plane,  and  if  a 

tracing  is  taken  the  distance-time  diagram  will  be  found  to  be 
similar  to  Fig.  7.  Now  adjust  the  length  of  the  thread  so  that 

the  small  weight  reaches  the  floor  while  the  trolley  is  running 
under  the  spring,  and  take  a  tracing  of  the  motion. 

Pull  the  trolley  back  up  the  plane,  until  the  weight  is  just 

being  lifted  from  the  floor,  and  mark  on  the  tracing  the  position 
of  the  brush  on  the  centre  line.  This  gives  the  point  in  the 

trolley's  run  at  which  the  weight  ceased  to  act.  In  a  case  where 
this  point  was  found  to  be  8  cm.  from  the  starting  point,  the 
following  were  the  measurements  of  the  total  distances  travelled 

by  the  end  of  successive  tenths  of  a  second;  -7,  2-8,  6-4,  10-7, 

15-4,  20-1  and  24*8  cm.  Plot  the  distance-time  diagram  for  this 
run,  drawing  as  smooth  a  curve  as  you  can  through  the  observed 

points  (Fig.  8).  It  will  be  seen  that,  as  we  should  expect,  the 

latter  part  of  the  curve  is  a  straight  line  representing  uniform 
speed.  P  is  the  point  on  the  curve  whose  ordinate  is  8  cm.,  and 

so  it  corresponds  to  the  point  at  which  the  weight  ceased  to  act. 

We  see  by  the  diagram  that  the  time  at  which  the  weight  ceased 

to  act  was  -34  sec.  after  the  start.     Since   the  speed   did  not 
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change  after  that,  it  is  reasonable  to  call  this  speed  the  "speed  at 
this  instant ";  and  this  may  be  taken  as  the  speed  at  this  instant 
whether  the  weight  hits  the  floor  then  or  not.  We  can  now 
understand  the  meaning  of  the  phrase  the  velocity  of  a  body  at  a 

given  instant,  as  being  the  uniform  velocity  with  which  the  body 
would  proceed  if  the  applied  forces  ceased  to  act  at  that  instant. 
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10.  Speed  and  Velocity.  It  will  be  noticed  that  we 

have  sometimes  used  the  word  Speed  and  sometimes  Velocity,  to 
represent  the  rate  at  which  a  body  is  moving.  The  word  speed 

is  commonly  used  when  we  are  considering  only  the  rate  at  which 
a  body  travels  along  its  path,  the  word  velocity  when  both  speed 
and  direction  are  considered.  So  the  speed  of  a  body  moving  in 

a  circle,  e.g.  a  stone  in  a  sling,  may  be  constant,  but  its  velocity 
is  continually  changing  because  its  direction  of  motion  changes ; 
and  the  velocity  of  a  piston  may  alternate  between  zero  and  some 
large  value,  sometimes  in  one  direction,  sometimes  in  the  opposite 
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direction.  We  can  distinguish  between  the  two  directions  along 

a  path  by  calling  one  the  positive  and  the  other  the  negative 

direction ;  then  the  sign  attached  to  the  number  representing  the 

velocity  shows  the  direction  in  which  the  body  is  moving.  When 

we  are  dealing  with  motion  along  one  straight  line  and  always  in 

the  same  direction  we  can  use  either  speed  or  velocity,  and  need 

not  mention  the  sign. 

Consider  a  stone  being  whirled  round  in  a  sling ;  its  velocity 

changes  from  instant  to  instant,  and  its  velocity  at  any  instant  is 

the  velocity  it  would  go  on  with  if  suddenly  released  at  that 

instant,  so  that  it  ''  flies  off  at  a  tangent."  The  direction  of  the 
velocity  at  that  instant  is  of  course  the  direction  of  the  tangent, 

and  the  magnitude  of  the  velocity  is  the  constant  speed  with 

which  it  was  being  whirled  round  in  a  circle  before  it  was 
released. 

Ex.  9.  Calculate  the  value  of  the  constant  velocity  of  the  trolley  in  the 
latter  part  of  the  experiment  described  in  Art.  9,  from  the  numbers  given 
there.  Calculate  also  the  average  velocity  from  the  start  up  to  the  instant 
when  the  weight  ceased  to  act.  Calculate  also  the  average  velocities  in  each 
of  the  first  three  tenths  of  a  second. 

Ex.  lO.  A  train  starting  out  from  a  station  and  stopping  at  another 

3|  miles  away  is  timed  to  pass  successive  quarter-mile  posts,  which  start  from 
the  former  station,  at  the  following  number  of  seconds  from  the  start ;  100, 
141,  173,  200,  224,  245,  265,  286,  306,  326,  347,  367,  395.  The  run  between 

stations  took  450  sees.  Plot  the  distance-time  diagram  of  the  run.  The 
most  convenient  scales  to  adopt  are  1  inch  to  half  a  mile  and  1  inch  to 
100  sees.  Find  what  was  the  speed  of  the  train  in  miles  per  hour  when 
it  became  uniform,  the  time  at  which  you  estimate  this  to  have  happened, 
and  the  average  speed  of  the  train  for  the  whole  run. 

Miscellaneous   Exercises. 

Ex.  1.  The  distances  from  the  starting  point  travelled  by  a  body  at  the 

end  of  successive  tenths  of  a  second  were  observed  to  be:  -4,  1-22,  2-46,  2-86, 

3,  3,  3-14,  3-5,  4,  4*5,  5,  5-5,  6  feet  respectively.  Plot  the  distance-time 
diagram,  on  scales  of  1  in.  to  1  ft.  and  1  inch  to  -2  sec.  Determine  the 

average  speeds  (1)  for  the  whole  time,  (2)  between  -6  sec.  and  1  sec.  from 
the  start.    Explain  what  the  curve  tells  you  about  the  speed  of  the  body. 



Miscellaneous  Exercises  17 

Ex.  2.  An  aeroplane  and  a  motor  car  start  together  on  a  journey  of 
80  miles,  the  former  going  at  50  miles  an  hour  and  the  latter  at  15  metres  a 
second,  on  the  average.  How  many  miles  will  the  motor  car  be  behind  the 
aeroplane  when  the  latter  has  finished  its  journey  ?   (Take  10  metres  =  11  yds.) 

Ex.  3.  A  sailing  boat  crosses  a  lake  to  a  point  5  miles  due  N.  of  the 
point  of  starting  in  3  hrs.  20  mius. ,  having  to  make  20  tacks  each  of  length 
1200  yards.  Find  (1)  its  average  speed  through  the  water,  (2)  its  average 
velocity  due  North. 

Ex.  4.  A  ship  covers  the  measured  mile  in  2  mins.  24  sees,  with  the  tide 
and  in  4  mins.  against  it.  Find  its  average  speed  over  the  ground  in  each 
trip  and  in  the  whole  of  the  two  miles.  Also  find  its  speed  through  the 
water,  assuming  that  and  the  tide  to  be  constant. 

Ex.  5.  A  lift  ascends  a  height  of  100  ft.  in  30  sees.,  what  is  its  average 
speed?  Its  actual  heights  at  the  end  of  successive  periods  of  5  sees,  are 

found  to  be:  6-7,  25,  50,  75,  93-3,  100  feet.  Show  the  motion  by  a  distance- 
time  diagram. 

Ex.  6.  A  man  walks  at  4  miles  an  hour  for  \  hour,  and  then  walks 
2  miles  at  three  miles  an  hour.  Find  his  average  speed  for  the  whole 
journey. 

Ex.  7.  The  telegraph  poles  by  a  railway  were  50  yds.  apart,  and  a  train 
was  observed  to  pass  a  post  every  4  sees.  Calculate  its  speed  in  miles 
an  hour. 

Ex.  8.  Assuming  that  the  Earth  is  a  sphere  of  4000  miles  radius, 
calculate  the  distance  through  which  a  person  at  the  equator  moves  in  one 
day ;  hence  find  his  speed  in  miles  an  hour. 

Ex.  9.  Assuming  that  the  orbit  of  the  Earth  round  the  Sun  is  a  circle 

of  radius  92,000,000  miles,  find  the  Earth's  average  speed  in  its  orbit,  in 
miles  an  hour. 

Ex.  lO.  A  ship  near  the  coast  in  a  fog  gives  a  short  blast  on  its  syren, 
and  the  echo  from  the  cliffs  is  heard  6  sees,  later.  Assuming  that  sound 

travels  at  the  rate  of  1100  ft.  per  sec,  calculate  the  ship's  distance  from  the 
cliffs. 

Ex.  11.  London  taxi-cab  drivers  can  charge  2d.  for  each  quarter-mile 
or  each  2^  minutes.  How  slowly  must  they  drive  in  order  to  bring  the 
latter  rate  of  payment  into  operation  while  they  are  moving  ? 

Ex.  12.  A  rough  rule  for  converting  speeds  is  to  take  two-thirds  of  the 
speed  in  ft.  per  sec.  as  the  speed  in  miles  per  hour.  What  is  the  percentage 
error  ? 

A.  2 
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Ex.  13.  An  express  train  running  at  65  miles  an  hour  overtakes  a 
local  train  200  feet  long  which  is  running  at  35  miles  an  hour ;  how  long 
will  it  take  a  spectator  in  the  former  train  to  pass  the  latter  ? 

Ex.  14.  A  man  walks  a  distance  of  14  miles  in  3^  hours  ;  what  is  his 

average  speed  ?  If  his  average  speed  for  the  first  6  miles  was  5  miles  an 
hour,  what  was  his  average  speed  for  the  last  8  miles  ? 

Ex.  16.  A  bristle  is  fixed  to  the  end  of  a  tuning  fork  which  gives 
256  vibrations  a  second,  and  pressed  against  a  strip  of  smoked  paper  fastened 
on  the  rim  of  a  rotating  drum,  the  diameter  of  which  is  6  ins.  The  wave 

lengths  recorded  are  found  to  be  of  a  constant  length  of  '16  in.  Find  the 
speed  of  the  drum  in  revs,  per  minute. 

Ex.  16.  The  driving  wheels  of  a  locomotive,  which  are  6  ft.  in  diameter, 
are  making  126  revs,  per  minute.  Calculate  the  speed  of  the  train  in  miles 

per  hour. 

Ex.  17.  During  a  passage  of  7  hours  a  vessel  steams  at  6  knots  for  the 
first  hour,  at  8  knots  for  the  next  two  hours,  and  at  10  knots  for  the  last 

four  hours.  "What  is  the  average  speed  in  knots  for  the  whole  7  hours? 
Express  this  speed  also  in  miles  an  hour.     (1  knot  =  6080  ft.  per  hour.) 

Ex.  18.  The  volume  swept  out  by  the  piston  (single  acting)  of  a  single 
cylinder  petrol  motor  is  40  cub.  ins. ;  it  makes  1200  revs,  per  min.  and 
takes  in  a  charge  of  gas  at  every  other  down  stroke  through  a  pipe  1  inch  in 
diameter.  Find  the  average  speed  of  the  gas  in  this  pipe,  expressed  in  ft. 
per  sec.  If  this  pipe  supplies  four  such  cylinders  instead  of  one,  find  the 
speed  of  the  gas  in  miles  per  hour. 



CHAPTER  II 

THE  EFFECT  OF  A  CONSTANT  FORCE  ON  A  BODY 

11.  Inertia;  Newton^s  First  Law  of  Motion.  Every- 
one knows  from  his  ordinary  experience  that  when  a  body  is  in 

motion,  it  "  takes  some  stopping,"  and  that  a  heavy  weight  "takes 
some  starting."  He  also  knows  that  it  takes  some  little  force  to 
deflect  a  rapidly  moving  body  into  some  other  line  of  motion ;  for 
example,  if  he  is  skating  fast  and  wishes  to  swing  round  and  go 

on  at  right  angles  to  his  previous  track,  he  has  to  exert  consider- 
able force  on  the  ice  to  do  it.  We  may  include  these  three 

facts  in  one  statement,  that  ybrce  is  needed  to  change  the  velocity 
of  a  body.  Other  instances  of  the  same  general  law  may  be  cited. 

If  you  are  standing  up  in  a  railway  carriage  when  the  train 
either  starts  or  stops  somewhat  suddenly,  you  fall  backwards  or 
forwards  unless  you  exert  some  force  to  prevent  it  by  holding  on 

to  something;  if  the  train  is  running  fast  round  a  curve,  you 
feel  yourself  impelled  towards  the  outer  rail.  A  motor  car  or 

a  bicycle  making  a  sharp  turn  on  a  greasy  road  is  liable  to 

"skid,"  that  is,  to  continue  moving  in  the  same  direction  as 

before.  It  needs  a  considerable  push  to  start  a  "heavy"  person 
sitting  in  a  swing,  though  the  person's  weight  does  not  come  into 
play  until  he  has  swung  through  an  appreciable  angle ;  it  is  the 
quantity  of  matter  to  be  set  in  motion  that  determines  the  force 
needed.  A  train  runs  on  for  some  time  after  steam  has  been 

shut  off  the  engine ;  it  slows  down  and  comes  to  rest  because  of 

friction.  The  smaller  we  make  this  retarding  force  of  friction, 

the  longer  it  takes  to  lose  its  speed ;  and  if  we  could  destroy  the 
friction  altogether,  so  far  as  we  can  tell  it  would  never  come  to 

2—2 
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rest  miless  some  outside  force  stopped  it.  This  is  the  case  with 

the  motion  of  the  moon  and  the  planets ;  every  change  that 
occurs  in  their  motion  can  be  predicted  from  a  knowledge  of  the 
force  of  attraction  of  the  sun  or  earth,  &c.,  on  them,  and  we  know 

of  no  instance  in  which  they  have  started,  or  stopped,  or  changed 
their  course  without  the  help  of  some  force  outside  themselves. 

These  observations  have  been  summed  up  in  a  general  law  by 

Sir  Isaac  Newton,  which  may  be  translated  as  follows :  '^  Every 
body  continues  in  the  same  state  of  rest  or  of  uniform 
motion  in  a  straight  line,  except  in  so  far  as  it  may 

be  compelled  to  change  that  state  by  applied  forces/^ 

This  important  law  is  called  Newton's  First  Law  of  Motion. 

The  meaning  of  the  phrase  "applied  forces"  may  not  be  clear  at  first 
sight.  If  a  body  is  sliding  over  perfectly  smooth  horizontal  ice,  there  will 

be  "applied  forces"  on  it,  i.e.  the  attraction  of  the  earth  downwards  and 
the  pressure  of  the  ice  upwards ;  but  these  balance  one  another  and  are  in 
equilibrium;  they  do  not  bring  the  body  to  rest.  What  is  meant  in  this 
law  is  a  force  which  is  not  balanced  by  another  force  acting  on  the  same 
body,  i.e.  what  is  called  a  resultant  force  in  statics. 

A  special  name,  Inertia^  is  given  to  the  inability  of  matter 
to  change  its  own  state  of  rest  or  of  uniform  motion  in  a  straight 

line.  To  overcome  the  inertia  of  a  body  an  "  applied  "  force  is 
needed,  and  we  know  from  experience  that  the  amount  of  this 

applied  force  depends  on  the  quantity  of  matter  in  the  body, 

i.e.  on  its  "mass,"  a  larger  force  being  needed  to  produce  a  given 
change  of  velocity  in  a  large  body  than  in  a  small  one  of  the  same 

material.  The  ordinary  idea  of  the  "  massiveness  "  of  a  body  is 
directly  connected  with  the  resistance  it  offers  to  a  change  in  its 

velocity;  if  you  wish  to  know  whether  a  barrel  lying  on  the 
ground  contains  much  matter,  you  probably  push  it  with  your 

foot  and  judge  by  the  resistance  it  opposes  to  you.  So  inertia  is 
the  name  for  a  certain  property  of  matter,  and  we  use  the  word 
mass  when  we  wish  to  express  it  numerically ;  other  properties  of 
matter  are  hardness,  elasticity,  &c.,  but  they  do  not  need  to  be 
expressed  numerically  so  often  as  to  make  it  worth  while  to 

invent  a  name,  corresponding  to  mass,  for  their  numerical  measure. 
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12.  Force.  Our  idea  of  force  comes  from  our  sensations 

when  we  use  our  muscles.  If  we  hold  a  14  lb.  weight,  we  are 

conscious  of  exerting  a  definite  force  to  prevent  the  weight  from 

falling  to  the  ground,  and  if  we  catch  a  cricket  ball  we  are  con- 
scious of  exerting  a  force  to  stop  its  motion.  We  say  also  that 

we  can  feel  the  weight,  or  the  cricket  ball,  exerting  a  force  on 
our  hands.  This  latter  force,  which  the  earth  exerts  on  the 

weight  would  set  it  in  motion  downwards,  if  we  did  not  oppose  it 
with  another  force ;  and  the  force  which  we  exert  on  the  weight 

would  set  it  in  motion  upwards,  if  the  attraction  of  the  earth  on 

the  weight  suddenly  ceased.  So  both  these  forces  tend  to  set 
the  weight  in  motion,  though  they  fail  to  do  so.  Again,  the 

force  exerted  by  the  hand  on  the  cricket  ball  stops  its  motion, 
and  the  force  exerted  by  the  cricket  ball  on  the  hand  sets  the 

hand  in  motion.  We  can  sum  up  these  conclusions  in  the  state- 

ment, ^^  Force  is  that  which  changes,  or  tends  to  change,  a  body's 
state  of  rest,  or  of  uniform  motion  in  a  straight  lineT  This  defini- 

tion of  force  is  merely  another  way  of  writing  Newton's  First 
Law  of  Motion. 

As  we  cannot  accurately  compare  forces  by  our  sensations, 

we  generally  measure  them  by  the  "dead  weight"  they  will 
support,  or  by  the  extension  which  they  will  produce  in  the 
spring  of  a  spring  balance  Either  method  will  give  the  numerical 
value  of  the  force  to  be  measured,  but  it  should  be  noted  that 

the  second  depends  on  the  first,  for  the  spring  balance  is  graduated 

by  hanging  weights  on  to  it. 

13.  Measurement  of  Forces  in  Statics  and  Dyna- 
mics.  In  Statics  we  are  dealing  with  bodies  at  rest,  and 

we  usually  measure  forces  by  weights  acting  on  the  body 
by  strings,  which  are  passed  over  pulleys  if  we  want  forces 
inclined  to  the  vertical.  But  if  the  weight,  instead  of  keeping 

the  body  at  rest,  overcomes  the  other  forces  opposing  it  and 

makes  the  body  begin  to  move,  then  the  force  it  exerts  on  the 
body  along  the  string  becomes  less  than  its  own  weight,  and  so 
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the  force  exerted  can  no  longer  be  measured  by  the  weight  of  the 
mass  attached  to  the  string.  To  show  that  this  is  so,  we  use  the 
other  method  of  measuring  forces  which  is  sometimes  adopted  in 

statics  in  place  of  ''dead  weights,"  namely  the  extension  of  a 
spring  balance;  the  accuracy  of  this  method  of  measuring  a  force 

is  not  affected  by  the  motion  of  the  spring  balance  itself,  because 
that  motion  does  not  affect  the  elasticity  of  the  steel  of  which 

the  spring  is  made,  on  which  depends  the  extension  for  a  given 
pull.  If  then  we  fix  a  sensitive  spring  balance  to  a  trolley,  and 

attach  to  it  a  thread  carrying  a  mass,  as  described  on  page  14, 

Thredid 

Fig.  9. 

we  can  measure  by  the  reading  of  the  spring  balance  the  force 

which  the  mass  exerts  on  the  trolley,  first  when  the  latter  is 
held  at  rest,  and  then  while  the  mass  is  allowed  to  make  the 

trolley  get  up  speed.  We  shall  see  that  this  force  is  less  while 
the  trolley  is  moving  than  when  it  is  at  rest,  but  that  it  remains 

constant  during  the  motion  whatever  speed  the  trolley  has 

attained.  If  we  put  different  loads  on  the  trolley,  we  shall 
find  that  the  less  the  load  the  greater  will  be  the  difference 

between  the  force  exerted  by  the  mass  when  at  rest  and  when 

allowed  to  move  under  the  action  of  gravity.      Here  are  the 
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results  of  such  an  experiment.  The  acting  mass  was  '5  lb., 
and  the  spring  balance  recorded  '5  lb.  wt.  when  the  trolley  was 
held  at  rest.  When  the  trolley,  loaded  to  3  lbs.,  was  released, 

the  spring  balance  showed  "43  lb.  wt.  throughout  the  motion,  a 
decrease  of  "07  lb.  wt. ;  when  the  trolley  was  loaded  to  a  mass  of 

7  lbs.  altogether,  the  spring  balance  showed  "47  lb.  wt.,  a  decrease 
of  -03  lb.  wt.  during  the  motion.  So  it  would  clearly  lead  us 
into  serious  errors  if  we  assumed  that  the  half-pound  mass 

exerted  a  pull  of  half-a-pound  weight  on  the  trolley  when  they 
were  moving;  but  we  can  take  the  pull  a,s  constant,  whatever 
speed  it  produces.  If  we  need  to  know  its  actual  value  we  must 

use  a  spring  balance,  or  calculate  it  by  general  laws  to  be  dis- 
covered later ;  but  in  the  early  part  of  dynamics,  all  we  require 

is  that  the  force  should  remain  constant  throughout  the  motion 

which  it  produces,  and  we  see  that  the  pull  exerted  by  a  mass 
does  this. 

14.  Effect  of  a  constant  force  on  a  body  initially 

at  rest;  Uniform  Acceleration.  We  will  now  make  ex- 

periments to  determine  how  a  body  moves  from  rest  when  it  is 
acted  on  by  a  force  which  is  constant  in  magnitude  and  direction. 

Slope  the  plane  just  enough  to  balance  frictional  resistances 

to  the  motion,  so  that  the  trolley  when  started  down  the  plane 
runs  on  at  constant  speed.  Attach  to  the  trolley  a  thread  passing 
over  a  pulley  at  the  bottom  of  the  plane  and  carrying  a  mass ; 

take  a  tracing  of  the  motion  when  the  trolley  is  released.  Deter- 
mine the  distances  moved  from  rest  up  to  each  alternate  transit 

of  the  brush  across  the  centre  line.  The  numbers  found  in  a 

particular  experiment  were  1-52,  6-08,  13*68  and  24-32  cm.  We 
do  not  need  to  know  the  time  occupied  in  one  vibration  of  the 

spring;  we  will  call  this  time  "one  vibration." 
Now  arrange  a  platform  at  such  a  height  that  the  mass  just 

rests  on  it  when  the  trolley  has  moved  from  rest  through  the  first 

wave-length  (1'52  cm.  in  our  experiment),  so  that  the  force  will 
cease  to  act  after  one  vibration.     Take  a  tracing  of  the  motion 
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under  these  conditions  and  determine  from  it  the  value  of  the 

uniform  velocity  which  the  trolley  acquires,  as  on  page  14;  that 

is,  the  velocity  at  the  end  of  one  vibration  from  the  start.  This 

was  found  to  be  3-04  cm.  per  vibration. 
Move  the  platform  to  such  a  height  that  the  mass  rests  on 

it  after  two  vibrations  (i.e.  6*08  cm.  from  the  start  in  our  experi- 
ment), and  in  the  same  way  as  before  determine  the  velocity  at 

the  end  of  two  vibrations;  this  was  found  to  be  6*08  cm.  per 
vibration.  In  the  same  way,  determine  the  velocity  acquired  at 
the  end  of  three  vibrations;  this  was  in  our  experiment  found 

to  be  9*12  cm.  per  vibration,  and  at  the  end  of  four  vibrations  it 

was  found  to  be  12-16  cm.  per  vibration. 
If  these  results  are  examined,  it  is  seen  that  at  the  end  of 

1,  2,  3,  etc.  periods  from  the  start  the  velocities  are  in  the  pro- 
portion of  1,  2,  3,  etc.  Since  we  have  taken  the  period  of 

vibration  of  the  spring  at  random,  it  cannot  be  a  mere  coincidence 

that  this  is  so ;  if  there  is  any  doubt,  we  can  alter  the  period  as 
often  as  we  like  and  repeat  the  experiment,  hence  we  are  justified 

in  saying  that  the  velocity  increases  steadily  with  the  time 
during  which  the  constant  force  has  acted.  And  as  we  have 

taken  the  load  on  the  trolley  and  the  constant  force  at  random, 

we  are  justified  in  saying  that  the  result  is  true  of  any  body 
acted  on  by  any  force  under  these  circumstances.  So,  if  a  body 
moves  from  rest  under  a  constant  force,  its  velocity  at  any  instant 
is  proportional  to  the  time  elapsed  from  the  start.  In  other  words, 

the  body  gets  up  speed  steadily ;  its  velocity  increases  each  second 

by  the  same  amount.  When  this  is  so,  the  amount  by  which 
the  velocity  of  the  body  increases  in  a  second  is  called  its 

^^ Acceleration,^'  and  the  body  is  said  to  move  "with  uniform 
acceleration." 

In  the  above  case  the  velocity  increased  by  3*04  cm.  per 
vibration  in  each  successive  vibration,  so  the  acceleration  may  be 

expressed  as  "  3*04  cm.-per-vibration  per  vibration  " ;  we  cannot 
tell  what  is  the  increase  of  velocity  in  a  second  until  we  know  the 
time  of  one  vibration. 
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Fig.   10  is  a    combined  distance-time  diagram    of    the   four 
tracings  obtained  in  this  experiment. 

Ex.  1.     In  a  similar  experiment  the  velocity  at  the  end  of  4  vibrations 

from  rest  was  found  to  be  7 '85  cm.  per  vibration,  and  at  the  end  of  6  vibrations 

to  be  11*77  era.  per  vibration.     Is  the  acceleration  uniform,  and  if  so,  what 
is  its  value  ? 

7*85 

The  rate  at  which  velocity  increased  in  the  first  4  vibrations  was  — -j-  , 
11*77 

or  1*963,  cm.  per  vibration  per  vibration,  and  in  the  first  six  it  was  — - —  , 

or  1*962,  cm.  per  vibration  per  vibration. 
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Ex.  2.  In  a  similar  experiment,  the  velocity  after  7  vibrations  from  rest 

was  found  to  be  15  "4  cm.  per  vibration.  If  the  period  of  the  spring  is  known 
te  be  \  sec,  what  is  the  value  of  the  acceleration  ? 

The  observed  velocity  is  15*4  cm.  per  \  sec,  or  5x15*4  cm.  per  sec. 
This  is  acquired  in  7x4,  or  1-4  sees.;  at  the  same  rate  of  increase,  the 

5  X  15*4 velocity  acquired  in  1  sec  was  — — —  ,  or  55*0,  cm.  per  sec.     Hence  the 

acceleration  is  55  cm.  per  sec  per  sec. 

Ex.  3.  In  a  similar  experiment,  the  velocity  after  3  vibrations  from  rest 

was  found  to  be  5*8  cm.  per  vibration.  If  the  spring  made  7  vibrations  per 
second,  what  is  the  value  of  the  acceleration  ? 

Ex.  4.  A  train  was  known  to  be  moving  with  uniform  acceleration  and 
at  the  end  of  I  min.  from  starting  its  speed  was  30  miles  an  hour.  What 
was  its  speed  at  the  end  of  10  seconds  from  starting  ?  How  long  would  it 
take  to  reach  a  speed  of  60  miles  an  hour  ? 

15.  The  same  tracings,  or  any  other  pair  taken  in  the  same 

way,  will  show  another  important  fact  about  a  body  moving  from 
rest  under  a  constant  force. 

In  our  experiment  we  found  that  the  trolley  had  travelled 

1*52  cm.  by  the  end  of  one  vibration,  and  24*32  cm.  by  the  end 
of  four  vibrations.     So  the  distance  it  travelled  in  the  interval 

between  these  two  instants  was  24-32 -1-52  or  22-8  cm.     Now 

the  interval  between  the  two  instants  was  three  vibrations,  so  the 
92-8 

average  velocity  during  the  interval  was  ̂ ^-^   or  7*6  cm.  per 
vibration. 

We  also  found  that  its  actual  velocities  at  the  beginning  and 

end  of  this  interval  were  3*04  and  12-16  cm.  per  vibration  re- 
spectively.     The   arithmetic    mean    of    these   two   velocities   is 

3-04  +  12-16         ̂ ^  .,       .  ,        .       ,. 
  ^    or  7'6  cm.  per  vibration ;    so  we  see  that  m  this 

case,  the  average  velocity  during  the  interval  is  equal  to  half  the 

sum  of  its  velocities  at  the  beginning  and  end  of  the  interval. 

As  before,  this  cannot  be  mere  coincidence,  and  we  can  take 

it  as  a  general  law  that  if  a  body  moves  under  a  constant  force^  its 

average  velocity  during  any  interval  is  half  the  sum  of  its  velocities 
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at  the  beginning  and  end  of  the  interval.  So  in  the  case  of  a  body 

moving  with  uniform  acceleration,  the  average  velocity  is  the 

"  average  "  (as  generally  understood,  i.e.  the  arithmetic  mean)  of 
its  initial  and  final  velocities ;  but  this  is  not  true  unless  the 
acceleration  is  constant. 

Ex.  5.  In  a  similar  experiment,  the  distance  travelled  in  2  vibrations 

was  found  to  be  4-24  cm.,  and  the  velocity  acquired  to  be  4-24  cm.  per 
vibration ;  at  the  end  of  6  vibrations  the  distance  from  rest  was  found  to  be 

38-16  cm.  and  the  velocity  acquired  12-72  cm.  per  vibration.  Find  the 
average  speed  and  half  the  sum  of  the  initial  and  final  velocities  for  this 
interval ;  do  these  results  verify  the  law  given  above  ? 

Ex.  6.  A  train  is  running  at  30  miles  an  hour  and  accelerates  steadily 
during  two  minutes  up  to  50  miles  an  hour;  how  far  does  it  run  while 
doing  so? 

Its  average  speed  is  40  miles  an  hour  during  the  2  minutes  ;  hence  the 
distance  run  is  1^  miles. 

16.  If  the  body  started  from  rest  under  the  constant  force, 

the  velocity  at  any  instant  is  twice  the  average  velocity  Jrom  the  start 

up  to  that  instant ;  for  the  initial  velocity  is  zero,  so  half  the  sum 

of  the  initial  and  final  velocities  becomes  half  the  final  velocity. 

Ex.  7.  A  body  moves  with  uniform  acceleration  from  rest  and  covers 

1*06  cm.  in  the  first  second  ;  what  is  its  acceleration  ? 

1  .AC 
Its  average  speed  in  the  first  second  is  -^j—  or  1'06  cm.  per  sec;  so  its 

speed  at  the  end  of  the  first  second  is  2x1-06  or  2-12  cm.  per  sec;  so  the 
acceleration  (or  increase  of  velocity  per  sec.)  is  2'12  cm.  per  sec  per  sec. 

Ex.  8.  A  body  moves  from  rest  with  uniform  acceleration  of  5*68  cm. 
per  sec  per  sec;  what  speed  does  it  attain  in  5  sees.,  and  how  far  does 
it  run  in  that  time  ? 

Its  velocity  increases  by  5-68  cm.  per  sec,  so  in  5  sees,  from  rest  it  is 
5x5*68  or  28*4  cm.  per  sec.     Hence  its  average   speed  during  this  time 

28*4 is  — -—  or  14-2  cm.  per  sec ;  and  the  distance  run  in  5  sees,  at  this  average 

is  14-2  X  5  or  71  cm. 

Ex.  9.  A  body  falls  from  rest  with  a  uniform  acceleration  of  32  ft.  per 
sec.  per  sec ;  what  will  be  its  speed  at  the  end  of  5  sees.,  and  how  far  will  it 
have  fallen  ? 
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Ex.  lO.  A  body  moves  from  rest  with  uniform  acceleration,  and  covers 

16-96  era.  in  the  first  4  sees.;  find  its  speed  at  the  end  of  that  time,  and 

deduce  its  acceleration. 

Ex.  11.  Calculate  the  speed  of  the  body  in  Ex.  9,  9  sees,  from  the 

start;  hence  find  its  average  speed  during  the  interval  from  5  to  9  sees,  from 

the  start ;  hence  calculate  the  distance  it  falls  during  that  interval. 

Ex.  12.  A  trolley  stands  on  a  plane  sloped  at  such  an  angle  that  it 

runs  down  with  uniform  speed.  A  mass  is  attached  ;  the  trolley  is  released 

by  a  trigger  actuated  by  the  spring  ;  the  mass  reaches  a  fixed  platform  after 

descending  14-8  cm.  The  period  of  the  spring  is  -2  sec.  The  tracing  gave 
the  following  results : 

Time  in  sees. 0 

•2 

•4 

•6 

-8 

1-0 

Distance  in  cm. 0 

•37 

1-53 3-42 6-08 9-50 

Time  in  sees. 
1-2 1-4 1-6 1-8 2  0 2-2 

Distance  in  cm. 13-68 18-21 22-95 27-70 32-46 
37-20 

Plot  the  distance-time  diagram,  on  a  scale  of  1  in.  to  10  cm.,  and  1  in.  to 
-4  sec.  Determine  from  it  the  time  after  the  start  at  which  the  force  ceased 

to  act  (i.e.  the  time  corresponding  to  14-8  cm.),  and  the  subsequent  uniform 
speed.  Calculate  the  average  speed  in  cm.  per  sec.  from  rest  up  to  this 
instant;  is  this  half  the  subsequent  uniform  speed,  i.e.  the  speed  at  the 

instant  ?  Calculate  the  average  speed  from  rest  to  the  end  of  -2,  -4,  -6,  '8, 
1-0  and  1-2  sees.  ;  hence  (since  acceleration  is  constant)  find  the  speeds  at 
the  instants  -2,  -4,  etc.  sees,  from  the  start.  Plot  these  speeds  and  the 
subsequent  uniform  speeds  on  a  diagram,  taking  times  as  abscissae  on  a 

scale  of  1  inch  to  -4  sec,  and  velocities  as  ordinates  on  a  scale  of  1  inch  to 
10  cm.,  as  in  Fig.  11.  Account  for  the  change  of  direction  at  the  point  P. 

Does  this  "velocity-time  diagram"  show  that  the  speed  increases  uniformly 
while  the  force  acts  ? 

Ex.  13.  Use  the  observations  given  in  Art.  14  to  calculate  the  average 
speed  during  each  successive  vibration  from  the  start,  expressed  in  cm. 
per  vibration.  Do  these  average  speeds  increase  by  the  same  amount  from 
one  vibration  to  the  next  ? 

Ex.  14.  Use  the  observations  given  in  Ex.  12  above,  for  distances 
travelled  under  the  action  of  a  constant  force,  to  calculate  the  average  speed 
during  each  of  the  first  six  successive  fifths  of  a  second.     Do  these  average 
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speeds  increase  by  the  same  amount  from  one  interval  to  the  next,  within 
the  accuracy  of  observation  (note  that  distances  are  measured  only  to 
the  nearest  tenth  of  a  millimetre)  ? 

Ex.  15.     The  following  are  the  measurements  of  a  tracing  taken  on  a 

piston-rod. 

Time  in  fifths       ̂  
of  a  second 

Distance  in  cm.   |  0 

1 2 3 4 5 6 7 
1 

8     j     9 

•15 
•60 

134 

2-34 
3-57 

5^0 

6^58 
8-26     100 

Plot  the  distance-time  diagram,  taking  1  inch  to  two- fifths  of  a  sec,  and 
1  inch  to  2  cm.  Could  you  tell  from  inspection  of  the  diagram  whether  the 
force  was  constant?  Determine  whether  the  average  speed  in  successive 
fifths  of  a  second  increases  by  the  same  amount  from  one  interval  to  the  next, 
and  compare  with  those  of  Ex.  13  and  Ex.  14  above ;  do  you  think  that  the 
piston-rod  was  moving  with  uniform  acceleration  ?  The  result  of  the 
comparison  suggests  a  ready  method  of  testing  whether  a  body  moves  with 

uniform  acceleration,  by  finding  whether  successive  wave-lengths  on  a  tracing 
increase  uniformly. 

17.  Bodies  falling  freely  from  rest.  It  is  not  easy 

to  determine  the  motion  of  a  body  falling  freely  under  the  action 

of  its  own  weight  alone ;  for,  in  the  first  place,  the  air  resists  the 
motion,  to  a  greater  or  less  extent  according  to  the  shape  and 

density  of  the  body;  in  the  second  place,   the  rate  at  which 
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a  falling  body  gets  up  speed  is  so  great  that  in  three  seconds  it  is 

moving  at  about  60  miles  an  hour,  so  that  we  must  use  much 

smaller  time  intervals  than  we  have  been  doing  hitherto. 

The  first  difficulty  can  to  some  extent  be  overcome  by  making 

observations  before  the  body  has  got  up^uch  speed,  for  it  is 

only  at  high  speeds  that  the  frictional  resistance  of  the  air  is 

considerable.  The  second  can  be  overcome  by  using,  instead  of 

a  flat  spring,  one  prong  of  a  large  tuning  fork  which  makes,  say, 

Fig.  12. 

256  vibrations  a  second;  a  bristle  attached  to  the  end  of  the 

prong  takes  the  place  of  the  brush,  and  the  falling  body  can  con- 
veniently consist  of  a  heavy  board,  carrying  on  its  face  a  piece 

of  smoked  glass,  against  which  the  tip  of  the  bristle  presses. 
A  tracing  will  be  made  on  the  glass,  which  can  be  measured  as 
usual ;  the  acceleration  will  be  found  to  be  uniform,  and  its  value 

about  981  cm.  per  sec.  per  sec.     But  this  experiment  requires 
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special  apparatus  and  is  not  easy  to  carry  out ;  so  we  will 
investigate  the  matter  in  a  less  direct  way. 

It  may,  or  may  not,  be  obvious  that  the  earth  attracts  a  body 
downwards  with  the  same  force  whether  the  body  is  at  rest  or  is 
in  motion ;  if  it  be  admitted  that  it  does,  then  the  acceleration  of 

a  body  falling  freely  under  its  own  weight  must  be  uniform,  for 
it  is  acted  on  by  a  constant  force.  If  it  be  doubted  (and  the 
experiment  in  Art.  13  may  suggest  such  a  doubt),  we  can  easily 
test  it  in  this  way.  Take  a  tracing  on  a  trolley  running  down 

a  plane  inclined  at,  say,  15°  to  the  horizontal ;  the  force  causing 
the  acceleration  is  the  resolved  part  of  the  trolley's  weight  parallel 
to  the  plane.  The  acceleration  is  found  (by  the  method  of  Ex. 

15,  above)  to  be  uniform,  so  the  component  of  the  trolley's  weight 
must  remain  the  same  however  fast  the  trolley  is  moving.  Hence 

the  whole  weight  of  the  body  (i.e.  the  attraction  of  the  earth  on 
it)  must  be  the  same  whether  it  is  in  motion  or  at  rest,  since 

a  definite  fraction  of  it  remains  unchanged ;  hence  the  body  if 
allowed  to  fall  freely  would  be  uniformly  accelerated. 

Next  repeat  the  experiment  with  a  different  load  in  the 

trolley ;  the  acceleration  is  found  to  be  the  same  as  before,  so  it 

is  at  least  extremely  probable  from  these  two  experiments  that 
all  bodies,  whatever  their  weight,  have  the  same  uniform  acceleration 
when  allowed  to  fall  freely. 

The  resistance  of  the  air  usually  conceals  this  latter  property 
of  falling  bodies,  because  it  retards  a  body  of  small  weight  and 

large  surface  much  more  than  it  retards  a  heavy  compact  body. 

For  example,  if  a  penny  and  a  disc  of  paper  the  size  of  a  six- 

pence are  released  together  from  the  same  height,  the  penny 
reaches  the  floor  long  before  the  paper;  but  if  the  experiment 
is  performed  in  a  glass  tube  from  which  nearly  all  the  air  has 
been  extracted,  they  fall  practically  side  by  side.  This  can  be 

shown  more  simply  if  less  conclusively  by  resting  the  paper 

on  the  penny,  held  horizontally  and  then  dropping  them;  the 

paper  falls  as  fast  as  the  penny,  because  the  latter  prevents  the 

resistance  of  the  air  from  retarding  the  paper.     Again  if  two 
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weights,  such  as  a  7  lb.  and  a  4  lb.  weight,  be  dropped  together 
from  a  height  of  five  or  six  feet  into  a  box  of  sawdust,  they  will 

arrive  together  as  nearly  as  can  be  seen  or  heard ;  for  the  resist- 
ance of  the  air  does  not  affect  either  of  them  ̂ eriously.  So  we 

can  say  that  all  bodies  falling  freely  havg  the  same  acceleration. 

Its  value  is  usually  denoted  by  "^r,"  whatever  be  the  units  in 
which  it  is  expressed. 

In  all  that  follows  about  bodies  falling  freely,   it   must  be 
understood  that  the  resistance  of  the  air  is  left  out  of  account. 

18.  To  measure  the  acceleration  of  a  body  falling 

freely.  Apparatus  as  in  Fig.  13  will 
be  needed.  It  consists  of  a  wooden 

bar  AB  about  4  ft.  long,  pivoted  on 

a  knife  edge  fixed  to  the  wall  at  G  \ 
wooden  studs  are  fixed  to  the  wall  at 

D  and  E.  A  thread  is  attached  to 

AB  at  F,  and  after  passing  round  E 

and  D  supports  a  large  lead  bullet  H. 
D  is  so  placed  that  H  just  touches 
the  face  of  the  bar  when  it  hangs 

vertically,  and  the  thread  is  made  of 
such  a  length  that  when  the  bar  is 

held  by  it  in  an  inclined  position  as 

in  the  figure,  the  centre  of  the  bullet 

H  is  just  on  a  level  with  the  knife 

edge.  A  strip  of  paper  is  attached  to 
the  face  of  the  bar,  so  that  the  bullet 
touches  it  when  the  bar  is  vertical. 

If  the  thread  is  now  burned  through 
between  E  and  D,  the  bullet  is  released 

and  falls  freely,  and  simultaneously 

the  bar  swings  down.  When  the  bar 
reaches  its  vertical  position,  it  strikes  the  bullet,  and  the  latter 

leaves  a  mark  on  the  paper ;  so  we  have  a  record  of  the  distance 

Fig.  13. 
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through  which  the  bullet  falls  while  the  bar  swings  down ;  in  a 

particular  experiment  this  proved  to  be  109  cm. 
We  next  determine  how  long  this  bar  takes  to  swing  down  to 

the  vertical  from  rest  in  an  inclined  position.  This  is  too  short 

to  measure  directly,  so  we  let  the  bar  swing  to  and  fro  many 

times  (say  25),  measure  with  a  watch  the  total  time  taken,  and 

deduce  the  time  of  one  quarter  swing.  In  this  case  25  swings 

^ok  47  sees.,  so  one  quarter  swing  takes  "47  sec. 

Hence  the  average  speed  of  the  bullet  during  the  first  '47  sec. 
109 

is  ̂ -j^  or  232  cm.  per  sec,  so  the  speed  attained  in  '47  sec.  is 

twice  232  or  464  cm.   per  sec.     Hence  the  speed  attained  in 
464 

1  sec.  is  ̂ r-— -  or  990  cm.  per  sec. ;  so  the  acceleration  is  990  cm. 

per  sec.  per  sec. 
It  was  assumed  above  that  the  time  spent  in  one  swing  of 

the  bar  is  the  same  whether  the  swing  is  long  or  short ;  during 

the  47  sees,  spent  in  making  25  swings,  the  length  (or  "  ampli- 

tude") of  the  swing  decreased  a  great  deal.  This  assumption 
can  be  shown  to  be  true  of  any  pendulum  provided  the  swing 
is  never  large ;  on  the  truth  of  this  depends  the  accuracy  of 

clocks,  for  they  use  a  pendulum  as  a  governor,  and  keep  the 
same  time  whether  the  clock  is  clean  (when  the  pendulum 

swings  vigorously)  or  whether  it  is  dirty  (when  the  pendulum 
swings  sluggishly).  This  forms  the  best  proof  that  the  time 

of  swing  of  a  pendulum  does  not  depend  on  the  distance  it 
swings  each  side  of  the  vertical,  provided  this  distance  is 

small ;  as  a  matter  of  fact,  the  experiment  we  are  describing  gives 

a  value  of  "^"  which  is  only  very  roughly  correct  because  of 
other  possible  errors. 

The  correct  value  for  g  at  Greenwich  is  981*17  cm.  per  sec. 

per  sec,  or  what  is  equivalent,  32*191  ft.  per  sec.  per  sec.  It  is 
found  to  vary  from  place  to  place  and  with  height  above  sea-level, 
but  is  about  the  same  at  all  places  on  the  same  parallel  of  latitude 
at  the  same  height.  It  is  generally  taken  as  981  cm.  per  sec. 
A.  3 
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per  sec,   or  32*2  ft.  per  sec.  per  sec,  unless  another  value  is 
stated. 

Ex.  16.  A  body  falls  freely  from  rest;  what  is  its  speed  at  the  end  of 

3  sees.?  what  is  its  average  speed  during  the  first  3  sees.?  how  many 

centimetres  will  it  fall  in  the  first  3  sees.  ? 

Ex.  17.  Calculate  the  distance  in  feet  fallen  from  rest,  by  a  body 

falling  freely,  in  1,  2,  3,  4  and  5  sees,  respectively. 

Ex.  18.  How  long  will  it  take  a  body  falling  freely  from  rest  to  attain 

a  speed  of  6  miles  an  hour  ? 

Ex.  19.    How  long  will  it  take  a  body  falling  freely  from  rest  to  fall 

20  feet  ?  what  will  then  be  its  speed  ? 
20 

Call  the  time  needed  t  sees.     Then  the  average  speed  is  —  ft.  per  sec. 

20        40 
Hence  the  final  speed  is  2  x  —  or  —  ft.  per  sec.     Now  the  speed  attained 

40  40 

at  the  end  of  t  sees,  is  32*2  x  «  ft.  per  sec.    So  ̂   =  322  x  t  or  <2=__  =  1-243, 

and  f=l'll  sees. 

Its  speed  will  be  1-11  x  32-2  or  36'74  ft.  per  sec. 

Ex.  20.  How  long  will  a  body,  falling  freely  from  rest,  take  to  fall 
6  feet? 

Ex.  21.  A  man  jumps  over  a  string  5  ft.  7  ins.  from  the  ground  ;  with 
what  speed  will  he  reach  the  ground  ? 

19.  Effect  of  a  constant  force  is  independent  of 

speed.  Retarding  Force.  We  have  seen  that  when  a  con- 

stant force  acts  on  a  body  from  rest,  it  continues  to  produce  the 
same  acceleration  throughout  the  motion,  however  fast  the  body 

is  moving.  Hence  if  a  constant  force  acts  on  a  body  already  in 
motion,  provided  it  acts  in  the  same  direction  as  the  body  is 

moving,  the  two  general  principles  which  we  found  in  Arts.  14,  15 
to  hold  for  a  body  starting  from  rest  under  a  constant  force  must 

hold  for  that  body  under  the  same  force,  even  when  the  body  is 
already  in  motion  when  the  force  begins  to  act ;  for  the  effect  of 
a  force  cannot  depend  on  whether  the  body  attained  its  speed 
under  the  action  of  that  force  or  of  some  other  force.     Hencp, 
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a  constant  J  or  ce  produces  the  same  uniform  acceleration  in  a  body 

whatever  be  the  speed  of  the  body  when  the  force  begins  to  act. 

We  can  now  deal  with  cases  where  a  body  is  in  motion  and  is 

acted  on  by  a  constant  force  opposing  the  motion ;  for  example, 

a  train  when  the  brakes  are  put  on,  or  a  stone  thrown  vertically 

upwards.  It  may  be  so  obvious  as  to  require  no  proof  that  the 

change  in  speed  produced  by  the  force  in  a  second  is  constant 

whether  the  force  is  making  the  speed  increase  or  decrease ;  but 

if  not,  it  may  be  verified  by  the  following  experiments. 

First  obtain  a  tracing  from  a  body  known  to  be  moving  with  any 

uniform  acceleration ;  measure  the  distances  between  successive 

transits  of  the  spring  in  the  same  direction  across  the  centre  line. 

It  will  be  found  that  these  distances  increase  by  the  same  amount 

from  one  vibration  to  the  next.     (Compare  Ex.  15  on  page  29.) 

Next  start  a  trolley  with  a  push  up  a  sloping  plane  so  that 

the  friction  and  the  component  of  the  trolley's  weight  down  the 
plane  oppose  the  motion ;  obtain  a  tracing  and  measure  as  before 

the  distances  covered  in  successive  equal  intervals  of  time.  These 

will  be  found  to  decrease  by  a  constant  amount  from  one  vibration 

to  the  next.  Hence  the  tracing  is  the  same  as  would  be  got  if 

the  trolley  were  getting  up  speed  under  a  constant  force,  but  in 

this  case  it  is  traced  backwards ;  in  that  case  the  increase  of 

speed  per  second  would  have  been  constant,  so  in  this  case  the 

decrease  of  speed  per  second  was  constant.  This  is  still  called 

"  uniform  acceleration  "  but  it  is  said  to  be  negative ;  it  is  also 
called  "uniform  retardation." 

Ex.  22.  A  train  is  running  at  60  miles  an  hour  when  steam  is  shut 
off.  Find  the  distance  it  runs  before  it  stops,  if  the  constant  force  of 
friction  brings  it  to  rest  in  five  minutes. 

The  retardation  is  constant,  so  its  average  speed  is  30  miles  an  hour, 

or  ̂   a  mile  a  min. ;  in  5  min.  at  this  average  speed  it  will  run  2*5  miles. 

Ex.  23.  A  motor  car  running  at  20  miles  an  hour  is  pulled  up  by  the 
brakes  in  10  yds.     Find  the  time  taken  in  stopping. 

Its  average  speed  during  the  process  is  10  miles  an  hour,  or  — -- —  ft.  per 

bO sec. ;  the  time  taken  to  run  30  ft.  at  this  average  speed  can  easily  be  found. 

3—2 
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JmS..  24.  A  motor  car  gets  up  a  speed  of  20  miles  per  hour  in  10  sees., 
and  is  then  stopped  by  the  brakes  in  3  sees.  Compare  the  distances  gone 
while  accelerating  and  while  stopping. 

Ex.  25.  A  stone  is  thrown  vertically  upwards  with  a  speed  of  48  ft.  per 
sec. ;  what  is  its  speed  and  its  height  at  the  end  of  one  sec.  ?  How  high 
will  it  rise? 

It  loses  speed  at  the  rate  of  32-2  ft.  per  sec.,  so  its  speed  after  1  sec.  is 

48-32*2  or  15*8  ft.  per  sec.     Its  average  speed  is  therefore      or 

31*9  ft.  per  see.;  so  in  1  sec.  it  rises  31*9  ft.     It  will  lose  all  its  speed  in 

  or  1"49  see.,  and  its  average  speed  during  that  time  is  —  or  24  ft.  per 

sec. ;  so  its  highest  point  is  24  x  1-49  or  35 '7  ft.  up. 

Ex.  26.  A  body  is  thrown  up  with  initial  velocity  of  200  ft.  per  see. 
How  long  does  it  take  to  rise  to  its  highest  point,  and  to  fall  to  the  ground 
again  ?     With  what  speed  does  it  reach  the  ground  ? 

Ex.  27.  A  train  running  at  60  miles  an  hour  comes  to  rest  in  200  yds. 
from  the  point  at  which  the  brakes  were  put  on.  Find  the  retardation 
caused  by  the  brakes, 

Ex.  28.  A  stone  is  thrown  vertically  upwards  with  an  initial  speed  of 
50  ft.  per  sec. ;  find  its  position  after  2  sees. 

It  loses  all  its  speed  in  -^-^  or  1-55  sec. ;  its  average  speed  while  rising 
oil'  2i 

is  25  ft.  per  sec. ;  so  its  greatest  height  is  25  x  1-55  ft.  or  38-8  ft.     It  then 
falls  from  rest,  and  in  the  "45  sec.  remaining  of  the  2  sees,  it  attains  a  speed 
of  -45  X  32-2  or  14 '5  ft.  per  sec.    So  its  average  speed  during  this  interval  is 
7*25  ft.  per  sec;  hence  it  falls  from  its  highest  point  through  7"25x  -45  or 
3-27   ft.     So  its  height   above  the  ground   after   2  sees,   is  38-8 -3-27  or 
35-53  ft. 

MlSCELLANEQUS     EXERCISES. 

Ex.  1.  A  train  under  constant  force  attains  a  speed  of  60  miles  an 
hour  in  2  mins.  How  much  does  its  velocity  (in  ft.  per  sec.)  increase  each 
second  ?     How  many  miles  does  it  run  in  the  first  2  mins.  ? 

Ex.  2.  Assuming  that  the  force  on  the  shot  in  a  gun  24  ft.  long  is 
constant,  find  the  time  the  shot  takes  to  traverse  the  gun  if  the  muzzle 
velocity  is  1800  ft.  per  sec. 
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Ex.  3.  A  train  under  constant  force  goes  220  yds.  in  the  first  half 
minute  from  rest ;  how  far  did  it  go  in  the  first  quarter  minute? 

Ex.  4.  A  motor  cycle  travelling  at  a  steady  50  miles  an  hour  passes  a 
motor  car  at  rest,  which  then  starts,  attains  a  speed  of  80  miles  an  hour  in 
1^  mins.  and  then  goes  on  with  that  speed.  At  what  time  and  distance  from 
the  start  will  it  catch  the  cycle  ? 

Ex.  5.  A  train  travelling  at  45  miles  an  hour  slips  a  carriage  600  yds. 
from  a  station.  The  carriage,  with  a  constant  retardation,  is  pulled  up  at 
the  station.     How  far  ahead  will  the  train  then  be? 

Ex.  6.  A  train  decreases  in  speed  from  60  miles  an  hour  to  30  miles  an 
hour  in  2  mins. ;  how  far  does  it  travel  in  doing  so  ? 

Ex.  7.  A  body  moves  with  an  acceleration  of  10  ft.  per  sec.  per  sec. ; 
what  is  its  acceleration  in  miles  an  hour  per  hour  ? 

Ex.  8.  The  velocity  of  a  body  changes  from  26  to  62  ft.  per  sec.  while 
travelling  108  yds. ;  what  is  the  acceleration  ? 

Ex.  O.  A  body  is  thrown  vertically  upwards  and  rises  to  a  height  of 
144  feet.     With  what  speed  will  it  reach  the  ground  again  ? 

Ex.  lO.  A  boy  standing  on  a  bridge  drops  a  stone  into  the  funnel  of  a 
locomotive  travelling  50  miles  an  hour.  If  he  is  50  ft.  above  the  level  of  the 
funnel,  how  far  from  the  bridge  is  the  engine  when  the  stone  is  dropped  ? 

Ex.  11.  A  balloon  is  rising  at  a  steady  speed  of  30  ft.  per  sec.  A  stone 
is  let  fall  from  it,  and  reaches  the  ground  in  17  sees.  How  high  was  the 
balloon  when  the  stone  was  dropped?  (The  stone  starts  up  at  the  same  pace 
as  the  balloon.) 

Ex.  12.  Show  that  if  a  train  travelling  at  60  miles  an  hour  is  suddenly 
brought  to  rest  by  a  collision,  a  passenger  facing  the  engine  will  hit  the 
opposite  wall  of  the  carriage  as  if  he  had  fallen  on  it  from  a  height  of 
121  feet. 

Ex.  13.  Two  motor  cars  start  side  by  side  from  rest.  A  gets  up  speed 
with  an  acceleration  of  3  ft.  per  sec.  per  sec.  for  15  sees,  and  then  goes  on 

with  uniform  velocity;  B  moves  with  an  acceleration  of  2-5  ft.  per  sec.  per 
sec.  for  20  sees,  and  then  goes  on  with  uniform  velocity.  How  far  ahead 
will  A  be  after  20  sees.  ?  _ When  will  they  be  level  again  ? 

Ex.  14.  In  how  many  seconds  will  a  stone  fair  to  the  bottom  of  a  pit 
200  ft.  deep? 

Ex.  16.  A  body  falling  under  its  own  weight  is  found  to  fall  4*025  ft. 
in  the  first  half  second  from  rest.     Find  the  acceleration. 
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Sx.  16.  A  stone  is  dropped  into  a  well  and  the  sound  of  the  splash 

is  heard  in  7'7  sees. ;  if  the  velocity  of  sound  be  1120  ft.  per  sec.,  find  the 
depth  of  the  well. 

Ex.  17.  A  body  was  acted  on  by  a  constant  force  which  caused  it  to 
accelerate  uniformly.  During  5  sees,  it  was  found  to  move  30  cm.  and 

during  the  following  3  sees,  it  moved  30  cm.  *  What  was  the  acceleration, 
and  with  what  velocity  did  it  start  at  the  beginning  of  these  8  sees.  ? 

Ex.  18.  A  stone  is  dropped  from  a  cliff  and  is  seen  to  strike  the  water 

in  4-5  sees.     What  is  the  height  of  the  cliff  ? 

Ex.  19.  The  distances  a  body  has  moved  from  rest  after  successive 
intervals  of  \  sec.  are  observed  and  found  to  be  3,  12,  27,  48  and  75  inches. 
Give  reasons  for  supposing  the  acceleration  to  be  uniform,  and  find  its  value 
in  ft.  sec.  units. 

Ex.  20.  If  a  train  gets  up  speed  steadily,  and  its  average  speed  during 
the  first  minute  is  found  to  be  15  miles  an  hour,  what  do  you  mean  by  the 

statement  "its  velocity  at  the  end  of  the  first  10  sees,  was  5  miles  an  hour  "? 

Ex.  21.  A  stone  is  thrown  upwards  with  a  velocity  of  48  ft.  per  sec.- 
Taking  g  as  32  ft.  per  sec.  per  sec,  calculate  the  time  from  the  start  at 
which  it  is  at  a  height  of  32  ft.  (1)  going  up,  (2)  coming  down. 

Ex.  22.  A  stone  is  thrown  vertically  upwards  with  a  speed  of  72  ft.  per 
sec. ;  determine  particulars  of  the  whole  subsequent  motion. 

Ex.  23.  A  shot  moving  at  1000  ft.  per  sec.  penetrates. 10  ins.  into  a 
target;  assuming  the  resistance  constant,  find  the  time  occupied  in  coming 
to  rest. 

Ex.  24.  An  arrow  starts  vertically  upwards  with  a  speed  of  200  ft.  per 
sec;  find  the  time  when  it  passes  a  point  200  ft.  above  the  point  of 
projection  (1)  on  its  upward,  (2)  on  its  downward  journey. 

Ex.  25.  A  stone  is  thrown  vertically  upwards  with  a  velocity  of  96  ft. 
per  sec. ;  taking  g  as  32  ft.  per  sec.  per  sec,  find  the  height  to  which  it  rises, 
and  the  time  from  the  start  at  which  it  has  fallen  16  ft.  from  its  highest 
point.  Hence  find  the  average  speed  during  this  time.  Compare  this  with 
half  the  sum  of  the  initial  and  final  speeds ;  are  they  the  same  ?  If  not,  can 
you  enlarge  the  law  to  cover  such  a  case,  by  taking  the  sign  of  the  velocity 
into  account,  and  substituting  for  average  speed  the  total  change  of  position 
divided  by  the  time  ? 

■  Ex.  26.  A  body  moves  a  certain  distance  from  rest  with  uniform 
acceleration ;  compare  the  velocity  at  half  time  with  that  at  half  distance. 
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20.  Motion  of  a  body  under  diflferent  constant 

forces.  Put  a  trolley  on  a  plane  sloped  just  enough  to  balance 

frictional  resistance  to  motion  down  the  plane,  and  attach  a 

mass  to  the  trolley  by  a  thread  running  over  a  pulley  at  the 
lower  end  of  the  plane,  and  acting  on  the  trolley  through  a 

spring  balance.  Release  the  trolley,  and  observe  the  force  acting 
on  it  while  in  motion  as  recorded  by  the  spring  balance.  Take 

a  tracing  of  the  motion  and  deduce  the  acceleration  as  follows. 
We  know  that  the  acceleration  is  uniform,  so  all  we  require  is 
to  measure  the  distance  travelled  from  rest  in  a  certain  number 

of  vibrations ;  we  do  not  need  to  know  the  periodic  time  of  the 

spring  for  this  experiment.  Suppose  the  length  of  say  5  wave- 
lengths is  found  to  be  30  cm. ;  then  the  average  speed  for  5 

vibrations  is  ̂ S  or  6  cm.  per  vibration,  so  the  speed  attained  at 

the  end  of  5  vibrations  is  12  cm.  per  vibration  and  the  accelera- 

tion is  "Y-  or  2*4  cm.  per  vibration  per  vibration.  Suppose  that 
the  force  in  this  case  was  observed  to  be  "18  lb.  wt. 

Repeat  the  experiment  with  the  same  trolley  but  a  different 

acting  mass ;  suppose  the  force  is  observed  to  be  '27  lb.  wt., 
and  the  length  of  5  wave-lengths  is  45  cm.  This  gives  an 

acceleration  of  3*6  cm.  per  vibration  per  vibration. 
There  is  clearly  a  simple  connection  between  the  forces  acting 

on  the  trolley  and  the  accelerations  produced ;  they  are  both 

increased  in  the  same  proportion  (3  to  2). 
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21.  This  connection  is  so  important  that  we  will  show  it  in 

a  more  accurate  way,  which  does  not  depend  on  a  measurement 

by  a  spring  balance  while  the  body  is  moving. 
Incline  the  plane  at  a  considerable  slope ;  attach  to  the  trolley 

a  weight  by  a  thread  passing  over  a  pulley  at  the  top  of  the  plane, 
thus  retarding  the  downward  motion  of  the  trolley.  Adjust  the 

weight  until  the  trolley  runs  down  the  plane  with  uniform  speed 
when  started.  The  forces  acting  on  the  trolley  parallel  to  the 

plane  are  then  three  :  (1)  the  component  of  its  own  weight  acting 
down  the  plane,  (2)  the  pull  in  the  thread  acting  up  the  plane, 

(3)  the  force  of  friction  opposing  the  motion,  and  so  acting  up 

the  plane.     As  the  speed   does   not   alter,   by  ]N"ewton's    First 

Fig.  14. 

Law  of  Motion  there  is  no  resultant  force,  so  the  first  force 

is  just  equal  to  the  sum  of  the  other  two.  Hence  the  pull  in 
the  string  is  equal  to  the  diifference  between  the  component  of 

the  trolley's  weight  down  the  plane  and  the  friction.  If  the 
string  were  to  break,  these  two  would  be  the  only  forces  acting 
on  the  trolley  parallel  to  the  plane,  and  the  resultant  force 
causing  the  motion  would  be  the  difference  between  them ;  so 

the  weight  of  the  mass  attached  to  the  string  measures  this 

force*.  (We  assume  that  we  can  neglect  the  friction  of  the 
pulley  in  its  bearings;   with  a  well-made  pulley,  this  makes  no 

*  Since  the  motion  is  uniform,  the  difficulty  dealt  with  in  Art.  13  does 
not  arise;  so  we  run  no  risk  of  confusion  here  in  calling  the  mass  attached 
to  the  thread  "a  weight." 
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appreciable  error.)  Let  the  trolley  run  down  the  plane  from 
rest,  without  the  retarding  weight  being  attached  to  it,  and  take 
a  tracing  of  the  motion ;  from  this,  determine  the  acceleration. 

For  example,  suppose  the  trolley  happened  to  weigh  6  lbs. 

and  the  plane  happened  to  be  inclined  at  20°  (there  is  no  need 
to  measure  these),  the  retarding  weight  necessary  to  produce 
uniform  speed  down  the  plane  would  probably  be  found  to  be 
2  lbs.  wt.  Suppose  we  find  that  when  the  trolley  ran  free  it 

travelled   26*16  cm.   during  the  first  two  vibrations;    then  its 

speed  at  the  end  of  this  time  was  2  x  ̂̂ ^^— —  cm.  per  vibration,  so 

its  acceleration  was   2  x  '^ — ^  cm.  per  vibration  per  vibration. Z  y.  A 

Hence  a  force  of  2  lbs.  wt.  produces  an  acceleration  of  13 "08  cm. 
per  vibration  per  vibration  in  this  trolley. 

Next  repeat  the  whole  experiment  at  several  diiferent  slopes 
of  the  plane.     Then  see  whether  the  accelerations  are  proportional 

to  the  acting  forces.     For  example,  if  the  plane  is  sloped  1 3°,  the 
retarding  weight  will  probably  be  found  to  be  1*29  lbs.  wt.,  and 
the  distance  travelled  in  the  first  two  vibrations  to  be  16*88  cm. 

So  the  acceleration  is  8*44  cm.  per  vibration  per  vibration.     And 

^i_  ̂   xu     £      X-       acceleration  .     ̂ ,      ̂     ̂   13*08 we  see  that  the  traction   — -^   m  the  first  case  was  — ^ — torce  2 
8*44 

or  6'54;  in  the  second  case  y^^  or  6'54.     (The  numbers  given 

as  probable  observations  are  calculated  from  the  weight  of  the 

trolley,  slope  of  the  plane,  etc.,  not  taken  from  actual  experi- 
ments, so  the  correspondence  works  out  exactly ;  but  careful 

experiments  will  show  very  nearly  that  there  is  a  constant  pro- 

portion between  acceleration  and  acting  force  whenever  diff'erent 
forces  act  on  the  same  body.)  Hence  '''■when  a  constant  force  acts 

on  a  body,  the  accelet^ation  produced  is  proportional  to  the  force." 
Ex.  1.  When  a  body  is  acted  on  by  its  own  weight,  its  acceleration 

is  981  cm.  per  sec.  per  sec. ;  if  this  body  is  dragged  along  a  perfectly  smooth 
horizontal  plane  by  a  force  equal  to  one- tenth  of  its  weight,  what  will  be  its 
acceleration  ? 
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Ex.  2.  What  will  be  the  acceleration  of  a  7  lb.  weight  lying  on  a 
horizontal  sheet  of  ice,  if  a  constant  force  of  half  a  pound  weight  acts  on  it? 

(Neglect  all  friction.) 

Ex.  3.  A  coal  truck  weighing  3  tons  stands  on  an  incline  such  that,  if 
started  down,  it  will  run  with  uniform  speed ;  an  engine  exerts  a  constant 
pull  of  500  lbs.  wt.  on  it;  what  will  be  its  speed  at  the  end  of  a  quarter  of  a 
minute? 

If  the  force  on  the  truck  were  its  own  weight  (3  tons  wt.  or  3  x  2240  lbs. 

wt.),  its  acceleration  would  be  32-2  ft.  per  sec.  per  sec;  in  this  case  the 
acting  force  is  500  lbs.  wt.  instead  of  3  x  2240  lbs.  wt.,  so  its  acceleration  is 

— TiKTR  ̂   ̂^'^  ̂ ^*  P^^  ®®®'  P®^  ̂ ®^' '  ̂ °  ̂ ^  -'■^  sees,  its  speed  will  be  15  times 
15  X  500 

the  velocity  added  per  sec,  or  - — —^  x  32-2  or  36'9  ft.  per  sec.  (24-5  miles 
an  hour). 

Ex.  4.  A  lift  weighs  half  a  ton;  what  will  be  the  pull  in  the  cable 
by  which  it  is  hung  when  the  lift  is  (1)  standing  still,  (2)  dropping  at 
uniform  speed? 

If  the  lift  is  allowed  to  fall  from  rest  with  an  acceleration  of  32-2  ft.  per 
sec  per  sec,  what  will  be  the  pull  in  the  supporting  cable  ? 

If  the  lift  is  allowed  to  fall  from  rest  with  an  acceleration  of  16*1  ft.  per 
sec.  per  sec,  what  will  be  the  pull  in  the  supporting  cable? 

Since  the  acceleration  is  half  of  that  produced  by  the  weight  of  the  lift, 

the  accelerating  force  must  be  one-half  the  weight  of  the  lift,  so  the  other 
half  (a  quarter  of  a  ton  weight)  must  be  supported  by  the  cable. 

If  the  lift  is  allowed  to  fall  from  rest  with  an  acceleration  of  1  ft.  per  sec. 
per  sec,  what  is  the  pull  in  the  supporting  cable  ? 

Here  the  accelerating  force  is  ̂ ^r-^  of  the  weight  of  the  lift,  so  the  re- 

mainder    (i.e.  I-qHTo)    °^   *^®  weight  must  be  supported  by  the  cable. 

31'2 
Hence  the  pull  in  the  cable  is  ̂r^r-^  x  1120  lbs.  wt. 

Ex.  5.  Supposing  that  a  man  weighing  12  stone  were  standing  in  the 
lift  of  Ex.  4  in  each  case,  what  force  would  the  lift  exert  on  him  ? 

Ex.  6.  If  a  body  rests  on  a  smooth  slope  of  gradient  one  in  ten,  what 
will  be  its  acceleration  if  allowed  to  slide  down  under  its  own  weight  ? 

This  "gradient"  means  a  vertical  rise  of  one  unit  length  for  a  distance 
of  10  units  measured  up  the  slope  ;  "smooth "  means  that  there  is  no  friction 
at  all.     The  component  of  the  body's  weight  down  the  slope  is  one-tenth  of 

its  weight  (see  page  31) ;  so  the  acceleration  will  be  ̂ ^  . 
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22.  Forces  needed  to  produce  the  same  accelera- 
tion in  different  bodies.  If  a  force  produces  a  certain 

acceleration  in  a  body,  it  is  clear  that  twice  this  force  will  be 

needed  to  produce  the  same  acceleration  in  two  such  bodies, 

alike  in  every  respect,  whether  separate  or  united  to  form  a  new 
body ;  three  times  the  force  will  be  needed  to  produce  the  same 
acceleration  for  three  such  bodies ;  and  so  on.  In  the  same  way, 

if  the  body  is  halved,  half  the  force  will  be  needed  to  produce 
the  same  acceleration  in  each  half ;  and  so  on. 

Whatever  definition  we  give  to  quantity  of  matter,  there  is 
clearly  twice  the  quantity  of  matter  in  the  second  body  as  in  the 

first,  and  so  with  the  others.  Hence  it  follows  that  '■'- the  forces 
needed  to  produce  the  same  acceleration  in  different  bodies,  made 
of  the  same  material,  are  in  the  same  proportion  as  the  quantities 

of  this  material  in  the  bodies." 
Thus  if  a  certain  force  is  found  to  produce  a  certain  accelera- 

tion in  an  iron  1  lb.  mass,  seven  times  that  force  will  be  needed 

to  produce  the  same  acceleration  in  seven  iron  1  lb.  masses  tied 

together  to  form  a  single  body,  or  in  an  ordinary  7  lb.  mass 
made  of  iron,  for  it  contains  the  same  quantity  of  iron  as  seven 
iron  1  lb.  masses  tied  together,  according  to  any  reasonable  test 

we  choose  to  apply ;  it  weighs  the  same,  has  the  same  volume, 
would  melt  down  into  the  same  sized  lump,  etc. 

Hence  it  is  clear  that  in  bodies  made  of  the  same  material, 

"the  quantity  of  this  material"  can  be  compared  by  their 
weights.  But  we  could  have  written  the  last  paragraph  as 

follows,  with  equal  correctness.  "  Thus  if  a  certain  force  is 
found  to  produce  a  certain  acceleration  in  a  cubic  foot  of  iron, 
seven  times  that  force  will  be  needed  to  produce  the  same 
acceleration  in  seven  cubic  feet  of  iron,  tied  together  to  form  a 

single  body,  or  in  a  lump  of  iron  whose  volume  is  seven  cubic 
feet,  for  it  contains  the  same  quantity  of  iron  as  seven  separate 
cubic  feet  tied  together,  according  to  any  reasonable  test  we 

choose  to  apply ;  it  weighs  the  same,  has  the  same  volume,  would 

melt   down    into   the   same   sized    lump,   etc."     Hence  we    can 
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equally  well  compare  the  quantity  of  material  in  the  bodies  by 
their  volumes. 

But  if  the  bodies  are  not  made  of  the  same  material,  for 

example  if  one  is  iron  and  the  other  wood,  how  are  we  to 

compare  the  quantities  of  matter  in  them  ?  Are  we  to  compare 
their  weights,  or  their  volumes,  or  perhaps  some  other  properties? 

23.  Quantity  of  matter  in  a  body.  If  you  buy  petrol 

for  a  motor,  your  object  is  to  get  a  quantity  of  the  material  that 
will  run  the  engine  for  a  certain  number  of  miles ;  you  specify 

the  quantity  you  require  by  saying  how  many  gallons  you  will 
take.  You  do  not  want  your  purchase  to  be  bulky,  except  in  so 
far  as  its  bulk  assures  you  that  you  have  got  the.  required 

quantity  of  the  material.  It  might  equally  well  be  sold  by 
weight,  though  its  weight  also  is  really  only  an  inconvenience 

to  you ;  what  you  want  is  its  power  of  producing  heat  when  it  is 
burnt.  Again,  if  you  have  to  provide  bread  for  a  number  of 

hungry  people,  you  buy  a  certain  weight  of  it,  or  lay  out  a 
certain  amount  of  money  on  it,  in  proportion  to  the  number  of 

people  to  be  fed ;  so  you  can  measure  the  quantity  of  food-stuflf 
you  require  by  its  weight  or  its  cost.  In  the  same  way,  you  can 
measure  the  quantity  of  any  one  kind  of  material  either  by  its 
bulk  or  its  weight  or  its  cost,  though  these  are  not  the  properties 
of  the  material  which  you  are  anxious  to  secure. 

But  how  are  we  to  compare  the  quantities  of  matter  in  a  tin 

of  petrol  and  a  loaf  of  bread  ?  It  is  obvious  that  the  method  to 

be  adopted  depends  on  the  use  we  propose  to  make  of  them. 
A  shillingsworth  of  bread  contains  more  nourishment  than  a 

shillingsworth  of  petrol,  it  gives  oif  less  heat  when  burnt,  and 

from  the  point  of  view  of  price,  they  are  equal. 
In  dynamics  we  have  to  deal  with  bodies  made  of  all  kinds 

of  material,  iron,  brass,  wood,  etc.,  and  in  order  to  indicate  that 

we  are  regarding  the  quantity  of  matter  in  a  body  solely  from 
the  point  of  view  of  the  effect  of  force  in  changing  its  motion, 

we  give  a  special  name,  Mass^  to  it.     So  the  question  at  the 
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end  of  the  last  Article  can  be  stated  thus :  "  How  are  we  to 

compare  the  masses  of  two  bodies  1 "  We  will  answer  the  question 
by  an  experiment,  which  shows  how  to  find  how  much  of  one 
material  is  equal  to  a  given  mass  of  another  material. 

24.  To  find  the  quantity  of  one  material  that  is 

equal  in  mass  to  a  body  made  of  another  material. 

Suppose  for  example  that  the  first  material  is  wood,  and  the 

given  body  is  an  iron  4  lb.  weight. 

Take  two  trolleys,  identical  in  all  respects.  Put  them  side 

by  side  on  a  table,  or  on  two  planes  lying  side  by  side  and 
sloped  just  enough  to  overcome  the  frictional  resistance  to  the 

trolleys'  motion. 

^^ 

Fig.  15. 

Attach  one  end  of  a  thread  to  each  trolley,  and  pass  the  loop 
so  formed  round  a  pulley,  as  in  Fig.  15  ;  apply  a  force  to  the 

axle  of  the  pulley,  so  as  to  drag  them  along  with  any  accelera- 
tion. The  force  will  be  equally  divided  between  them  if  there 

is  no  friction  at  the  bearings  of  the  pulley ;  and  as  they  are 

identical,  they  will  move  together,  whatever  force  is  applied. 
Now  put  the  given  mass  of  iron  on  one  of  the  trolleys,  and  a 

lump  of  wood  on  the  other;  on  pulling  as  before,  if  the  added 

masses  are  not  equal  to  one  another,  the  trolley  with  the  greater 
mass  will  be  left  behind  the  other,  because  the  same  force  does 

not  produce  so  much  effect  on  it.  The  amount  of  wood  must  be 

adjusted  until  they  once  more  move  together  whatever  force  be 

applied  to  the  pulley;  then  we  know  that  the  two  bodies  are 
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equal  so  far  as  forces  are  concerned,  that  is,  their  masses  are 

equal. 
If  now  we  perform  a  further  experiment  with  these  pieces  of 

iron  and  wood,  by  putting  them  one  in  each  pan  of  an  ordinary 

balance  or  pair  of  scales  we  shall  find  that  they  have  the  same 

weight.  As  we  have  chosen  the  materials,  amounts,  etc.,  at 
random,  it  is  clear  that  this  will  be  true  of  all  bodies  which  have 

equal  mass.  Hence  if  two  bodies  made  of  any  materials  have  the 
same  weight,  they  have  the  same  mass^  i.e.  a  given  force  will 

produce  the  same  acceleration  in  each  of  them. 

25.  Distinction  between  mass  and  Tveight.  Although 

this  simple  connection  exists  between  mass  and  weight,  great 
care  must  always  be  taken  to  distinguish  between  them.  Mass 

is  the  quantity  of  matter  in  a  body,  weight  is  the  force  with 
which  the  earth  attracts  it.  The  mass  of  a  body  is  the  same 
wherever  the  body  may  be,  whereas  the  weight  changes  from 

place  to  place ;  e.g.  if  a  spring  balance  is  accurately  graduated, 
and  a  10  lb.  mass  is  hung  on  it,  at  Greenwich  it  will  show  that 

the  weight  of  this  mass  is  10  lbs.  wt.,  but  if  the  experiment  is 

repeated  at  the  Equator  the  balance  will  show  only  9*97  lbs.  wt., 
and  at  the  North  Pole  it  would  show  10*02  lbs.  wt.  "  A  pound  " 
is  not  a  force,  but  a  mass ;  the  word  is  often  used  loosely  to 

express  "  the  weight  of  a  pound,"  but  for  that  purpose  it  is  much 
better  to  use  the  term  pound-weight,  or  lb.  wt.  whenever  any 
doubt  can  exist.  It  is  allowable  in  such  cases  as  "a  steam- 

pressure  of  180  lbs.  per  sq.  in.,"  in  which  there  is  no  doubt  as  to 
the  meaning,  and  the  custom  is  so  firmly  established  that  it 

would  be  pedantic  to  say  "lbs.  wt.  per  sq.  in.,"  even  though  it 
would  be  more  correct. 

26.  Units  of  Mass.  It  is  cumbrous  to  deal  with  "the 

proportion  between  the  quantities  of  matter  in  bodies  "  or  with 
"  the  proportion  between  their  masses,"  and  we  avoid  it  by 
adopting  some  unit  of  mass  and  stating  the  quantity  of  matter 

\ 

I 
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in  a  body  in  terms  of  that  unit.  The  legal  unit  of  mass  is  the 

quantity  of  matter  in  a  certain  lump  of  matter  which  is  preserved 
as  a  standard. 

Two  such  standards,  of  different  sizes,  are  legalised ;  one  is 

called  a  Pound  and  the  other  a  Kilogram.  In  the  British  system 
of  units,  the  Pound  is  the  unit  of  mass;  this  system  is  then 

called  the  ft.-lb.-sec.  system.  In  the  centimetre-gram-second 
(usually  written  c.  G.  s.)  system,  the  gram  is  the  unit  of  mass, 

being  one-thousandth  of  the  standard  Kilogram. 
Copies  of  these  standard  masses  can  be  made  in  any  material, 

by  making  them  of  the  same  weight  as  the  standard. 
Multiples  and  submultiples  of  the  unit  are  also  made;  for 

example,  we  make  a  7  lb.  mass  by  taking  enough  material  to 
weigh  as  much  as  seven  copies  of  the  pound,  and  an  ounce  by 
making  a  number  of  pieces,  each  of  which  weigh  the  same,  and 
16  of  which  weigh  as  much  as  the  standard  pound.  These  are 

often  called  "weights"  though  they  are  not  standards  of  weight 
at  all ;  as  a  matter  of  fact,  the  weight  of  one  of  these  standards 

changes  as  it  is  moved  from  place  to  place  on  the  earth.  But  if 
we  determine  the  weight  of  a  body  by  means  of  a  balance  and 

these  "weights,"  we  know  the  mass  of  the  body,  in  pounds 
or  grams;  if  it  weighs  m  lbs.,  we  know  that  the  force  needed 
to  produce  a  certain  acceleration  in  the  body  is  m  times  the 
force  which  will  produce  the  same  acceleration  in  a  body  of 
mass  1  lb. 

27.  Kinetic  units  of  Force.  Up  till  now  we  have 

measured  forces  as  in  Statics,  by  the  attraction  of  the  earth 

on  a  standard  mass  or  by  the  extension  of  the  spring  of  a  spring 
balance.  As  this  method  is  not  a  convenient  one  in  many 

dynamical  problems,  we  will  now  explain  another  way  of 
measuring  forces. 

As  usual  we  need  a  unit  in  terms  of  which  we  may  state 

the  magnitude  of  the  forces  we  are  using,  and  the  most  con- 
venient is  one  which  depends  directly  and  solely  on  the  units 
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of  mass,  length  and  time ;  such  a  unit  is  usually  termed  an 
Absolute  Unit.  The  absolute  unit  of  force  is  "  that 
force  which  acting  on  a  unit  mass  produces  in  it 

unit  acceleration.^^ 
If  we  are  using  the  British,  or  Foot-Eound- Second,  units,  the 

British  absolute  unit  of  force  will  be  "  that  force  which  acting 
on  a  mass  of  1  lb.  produces  in  it  an  acceleration  of  1  ft.  per  sec. 

per  sec."     It  is  called  a  Poundal. 
The  c.G.  s.  unit  of  force  is  "that  force  which  acting  on  a  mass 

of  1  grm.  produces  in  it  an  acceleration  of  1  cm.  per  sec.  per  sec." 
It  is  called  a  Dyne. 

The  Poundal  and  the  Dyne  are  called  Kinetic  units  of  force, 

because  they  depend  on  the  movement  which  they  produce  in 
bodies. 

Suppose  we  wish  to  express  the  value  of  any  given  force 
in  Poundals.  We  apply  the  force  to  the  standard  mass  of  1  lb. 
and  measure  the  acceleration  it  produces ;  call  this  a  ft.  per  sec. 

per  sec.  Now  we  know  from  experiment  (Art.  21),  that  when 

different  forces  act  on  the  same  body,  the  accelerations  are  pro- 
portional to  the  forces.  Since  by  definition  one  Poundal  would 

produce  in  this  body  an  acceleration  of  1  ft.  per  sec.  per  sec,  the 
force  to  be  measured  must  be  a  poundals. 

If  the  force  is  large,  it  would  be  inconvenient  to  test  it  on  so 

small  a  mass  as  1  lb.,  for  it  would  produce  an  acceleration  so 

large  as  to  be  hard  to  measure.  Suppose  we  apply  the  force 
to  a  mass  of  m  lbs.,  and  find  that  it  produces  an  acceleration 

of  a  ft.  per  sec.  per  sec.  We  have  seen  (Art.  22)  that  this  force 
must  be  m  times  as  great  as  that  needed  to  produce  the  same 

acceleration  in  a  mass  of  1  lb.,  and  we  have  just  seen  that  this 

latter  force  is  a  poundals.  Hence  the  force  we  are  measuring  is 
my.  a  poundals. 

Similar  reasoning  shows  that  the  force  needed  to  produce  an 
acceleration  of  a  cm.  per  sec.  per  sec.  in  a  mass  of  m  grms.  is 
ma  dynes. 

If  we  denote  the  force  by  F  poundals  or  dynes  according  as 
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we  are  measuring  m  and  a  in  British  or  c.  G.  s.  units,  then  we 
have  for  both  systems  the  equation 

F=m.a. 

Ex.  7.  A  body  of  mass  7  lbs.  moves  under  a  constant  force,  and  at  the 

end  of  1-2  sec.  from  rest  it  has  covered  18  inches;  what  is  the  force  ? 

The  average  speed  is  — ^  ins.  per  sec.  or    - — fo^**  P^^  ̂ ^^-f  ̂ ^  ̂ *^  speed 

at   the   end  of  the  1*2  sec.  is  :r— r — z-r  ft.  per  sec.     So  its  acceleration  is 1-2x12         ^ 
2  X  18 

^r-Ei — T7i — ^r-^  ft.  per  sec.  per  sec,  or  2*08  ft.  per  sec.     Hence  using  the l-2xl2xl*2         ^  ^  ^  ^ 

equation  F=ma  the  force  on  it  is  7  x  2-08  or  14-56  poundals. 

Ex.  8.  A  body  of  mass  3000  grms.  moves  under  a  constant  force,  and 

at  the  end  of  '9  sec.  it  has  moved  32-0  cm.  from  rest ;  calculate  the  force 
in  dynes. 

Ex.  9.  A  body  weighing  half  a  ton  is  acted  on  by  a  constant  force 
of  600  poundals ;  calculate  its  acceleration  and  hence  its  speed  at  the  end  of 
a  minute. 

28.  Relation  between  gravitational  and  kinetic 

units  of  force.  Since  the  kinetic  units  of  force  depend  only 

on  the  units  of  mass,  length  and  time,  and  do  not  depend  on  the 

position  of  the  place  where  they  are  used,  they  are  called 

"  absolute  "  units  of  force.  The  unit  of  force  commonly  used  by 
engineers,  the  weight  of  one  pound  mass,  is  called  a  "gravi 

tational"  unit.  The  magnitude  of  this  force  varies  with  the 
position  of  the  pound  mass,  being  greater  in  high  latitudes  than 
near  the  equator,  and  at  sea  level  than  at  the  top  of  a  mountain. 

Hence  if  precision  of  definition  is  important  it  is  necessary  to 
name  a  definite  spot  where  the  attraction  of  the  earth  on  the 

standard  pound  mass  is  to  be  measured,  and  Greenwich  is  usually 
adopted.  Since  this  force  (the  weight  of  a  pound  at  Greenwich) 
acting  on  a  body  whose  mass  is  one  pound  is  found  to  produce 

in  it  an  acceleration  of  32*1 91  ft.  per  sec.  per  sec,  the  force 

is  32-191  poundals.  So  one  pound  weighs  32-191  poundals  at 
Greenwich,  and  a  poundal  is  roughly  the  weight  of  half  an  ounce. 
A.  4 
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.  The  weight  of  one  pound  mass  at  any  other  place  is  not 

accurately  "  1  lb.  wt."  as  defined  above,  but  its  value  can  be 
calculated  when  the  value  of  g  at  that  place  is  known.  For  all 

easily  attainable  places  the  change  in  the  weight  of  one  pound 

is  small,  and  the  error  produced  by  calling  it  "  1  lb.  wt."  can 

often  be  neglected ;  e.g.  at  the  equator  it  is  only  an  error  of  -3  °/^. 
"The  weight  of  one  pound  at  Greenwich"  is  universally 

adopted  by  engineers  as  unit  force,  not  only  in  Statics,  but  also 

in  cases  where  there  is  a  change  of  velocity  (e.g.  the  draw-bar  pull 
which  accelerates  a  train,  the  force  needed  to  overcome  the  inertia 

of  a  piston,  the  pressure  of  steam  on  the  blades  of  a  turbine,  etc. 

are  expressed  in  lbs.  wt.).  In  such  cases  it  is  much  safer  for 

beginners  to  work  out  the  problem  in  poundals,  and  reduce  the 

result  to  lbs.  wt.,  if  it  be  desired  to  express  it  in  that  way. 

It  may  be  noted  here  that  the  weight  of  a  body  whose  mass 

is  M  grms.  is  981  x  if  dynes,  since  this  force  if  unresisted  will 

give  the  body  an  acceleration  of  981  cm.  per  sec.  per  sec. 

Ex.  lO.  Calculate  the  constant  force  (1)  in  poundals,  (2)  in  lbs.  wt., 
needed  to  get  up  a  speed  of  30  miles  an  hour  in  20  sees,  in  a  motor  car 
weighing  1  ton.  (Half  of  this  is  the  force  which  the  tyre  of  each  driving 
wheel  exerts  on  the  road.) 

Ex.  11.  A  motor  car  weighing  1  ton  and  running  at  20  miles  an  hour 
is  pulled  up  by  its  brakes  in  10  yards ;  calculate  in  poundals  and  in  lbs.  wt. 
the  force  exerted  by  the  tyres. 

Its  average  speed  is  10  miles  an  hour,  or  ̂   x  88  ft.  per  sec.    Hence bO 

the  time  occupied  in  stopping  is  -—- — — -   sees.     So  its  acceleration  is lU  X  oo 

20  X  88  X  10  X  88  ̂ , 

60  X  10  X  3  X  60     ̂ ^^  ̂^^'   ̂ ^^   ̂ ^^•'  ̂         *^^  *°^°^  °^  *^®  *^^^^  ̂^ 

2240  X  20  X  88  X  10  X  88     .,    2240x20x88x88,, 

60x10x3x60         P^"^^^^«  «^    32-2x60x3x60    ̂ ^«-  ̂*- 

Ex.  12.  A  lift  weighs  5  cwt. ;  find  in  poundals  and  lbs.  wt.  the  pull  in 
the  cable  supporting  it  (1)  when  it  is  at  rest,  (2)  while  it  is  moving  upwards 
at  constant  speed,  (3)  while  it  moves  upwards  with  uniform  acceleration  of 
6  ft.  per  sec.  per  sec. 

In  cases  (1)  and  (2)  the  pull  of  the  cable  balances  the  weight  of  the  lift, 
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so  it  is  5  X  112  or  560  lbs.  wt.,   or  560  x  32-2  poundals.     In  case  (3)  the 
resultant  force  on  the  lift  is  560  x  6  poundals,  so  the  pull  in  the  cable  is 

560  x  32-2  +  560  X  6  poundals,  or        Jt  ̂       lbs.  wt. 

Ex.  13.  A  man  weighing  12  stone  stands  in  a  lift,  which  is  descending 
with  an  acceleration  of  2  ft.  per  sec.  per  sec. ;  what  pressure  (in  poundals 

and  in  lbs.  wt.)  does  he  exert  on  the  floor  of  the  lift  ? 

Miscellaneous  Exercises. 

Throughout  these  exercises,  friction  is  to  be  disregarded,  and  the  value 

of  "<;"  may  be  taken  as  32  in  Bntish,  and  980  in  c.g.s.  units. 

Ex.  1.  Find  the  force  in  poundals  needed  to  produce  an  acceleration  of 
20  ft.  per  sec.  per  sec.  in  a  mass  of  20  lbs. 

Ex.  2.  Find  the  force  in  dynes  needed  to  produce  an  acceleration  of 
100  cm.  per  sec.  per  sec.  in  a  mass  of  1  kilogram. 

Ex.  3.  Find  the  velocity  of  a  mass  of  56  lbs.  after  a  force  of  100 
poundals  has  acted  on  it  for  3  seconds. 

Ex.  4.  A  body  acted  on  by  a  constant  force  of  60  poundals  for  2  sees, 
from  rest  has  a  velocity  of  88  ft.  per  sec. ;  what  is  its  mass  ? 

Ex.  5.  A  train  of  100  tons  running  at  60  miles  an  hour  is  brought  to 
rest  by  friction  in  30  seconds ;  what  is  the  effective  force  ? 

Ex.  6.    Find  the  force  in  poundals  needed  to  produce  an  acceleration  of 
32  ft.  per  sec.  per  sec.  in  a  mass  of  3  lbs. 

Ex.  7.  Find  the  vertical  force  in  poundals  needed  to  retard  a  body  of 
mass  3  lbs.,  so  that  it  may  fall  with  an  acceleration  of  16  ft.  per  sec.  per  sec. 

Ex.  8.  A  train  of  mass  100  tons  stands  on  an  incline  of  1  in  100 ;  find 
in  lbs.  wt.  the  component  of  its  weight  down  the  plane.  What  is  this  force 

in  poundals  ?  An  engine  exerts  a  constant  draw-bar  pull  of  4  tons  wt.  on 
the  above  train  down  the  incline;  find  this  force  in  poundals;  hence  find 
the  acceleration. 

Ex.  9.  Find  the  acceleration  when  the  engine  in  Ex.  8  pulls  the  train 
up  the  incline. 

Ex.  lO.  A  train  of  mass  100  tons  running  at  60  miles  an  hour  is 
brought  to  rest  by  the  brakes  in  10  sees,  on  the  level.  Find  the  braking 
force  in  lbs.  wt.  Find  also  the  time  and  distance  in  which  it  would  be 

brought  to  rest  by  the  same  braking  force  from  that  speed  when  running 
(1)  up,  and  (2)  down,  an  incline  of  1  in  50. 

4—2 
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Ex.  11.  A  crane  pulls  up  a  mass  of  200  lbs.  (1)  with  uniform  speed, 
(2)  with  an  acceleration  of  3  ft,  per  sec,  per  sec, ;  and  then  lets  it  down  with 
an  acceleration  of  4  ft,  per  sec,  per  sec.  Find  in  poundals  and  lbs,  wt.  the 
pull  in  the  chain  in  each  case, 

Ex.  12.  A  locomotive  engine  of  mass  50  tons  attached  to  a  truck  of 
mass  25  tons  moves  with  an  acceleration  of  2  ft.  per  sec.  per  sec.  Find 

(1)  the  total  force  exerted  by  the  engine  on  the  rails,  (2)  the  force  exerted  on 
the  truck. 

Ex.  13.  Compare  the  masses  of  two  bodies,  which  are  found  to  require 
forces  of  1  lb.  wt.  and  1000  dynes  respectively,  to  give  them  the  same 

acceleration.     (1  inch  =  2-54  cm.,  1  lb.  =454  grms.) 

Ex.14.  Find  the  number  of  dynes  in  1  poundal.  (1  lb.  =  454  grms., 

1  inch  =  2-54  cm.) 

Ex.  15.  A  train  runs  freely  down  an  incline  of  1  in  80.  Find  its  speed 
in  miles  per  hour  after  running  half  a  mile. 

Ex.  16.  •  A  rifle  has  a  barrel  30  ins.  long,  and  fires  a  bullet  weighing 
half  an  ounce,  with  a  muzzle  velocity  of  2000  ft.  per  sec.  Assuming  that 
the  pressure  of  the  gas  in  the  barrel  is  constant  while  the  bullet  is  in  it,  find 
the  acceleration  of  the  bullet  and  the  force  on  it. 



CHAPTER  lY 

FORCE    INCLINED    TO   DIRECTION    OF   MOTION 

29.  Action  of  a  force  at  an  angle  with  the  direc- 

tion  of  a  body's  motion.  We  have  hitherto  considered  the 
effect  of  a  force  which  acts  constantly  in  the  same  direction  as 

the  body  moves.  There  are  many  cases  in  which  the  force  acts 
at  an  angle  with  that  direction,  making  the  body  move  out  of  its 

straight  path;  for  example,  if  we  watch  the  flight  of  a  stone 
thrown  horizontally  we  see  that  its  path  curves  downwards  till 
the  stone  strikes  the  ground,  because  it  is  pulled  down  out  of  its 

straight  path  by  the  attraction  of  the  earth. 
It  is  not  obvious  at  first  sight  how  such  a  force  will  affect 

the  velocity  of  a  body ;  the  example  of  the  flight  of  a  stone 

suggests  that  a  force,  acting  at  an  angle  with  the  velocity  which 

a  body  has  at  the  moment,  changes  that  velocity  into  one  more 
in  the  direction  of  the  force ;  but  it  is  not  clear  how  rapidly  this 

change  of  direction  takes  place,  nor  whether  the  speed  of  the 
body  is  altered.  We  will  proceed  to  investigate  these  questions, 

and  must  begin  by  getting  clear  ideas  about  the  motion  of  a 

body  whose  velocity  is  continually  changing  in  magnitude  and 
direction.  In  order  to  simplify  the  matter  we  will  at  first 

consider  only  the  displacement  which  a  body  undergoes,  and  not 
attend  to  the  time  occupied  in  the  displacement. 

30.  Composition  of  Displacements.  Suppose  that  a 

body  is  moved  a  certain  distance,  say  3  feet,  horizontally  and 
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then  a  certain  distance,  say  4  feet,  vertically  upwards.  This 
clearly  comes  to  the  same  in  the  end  as 
if  it  had  been  moved  a  certain  distance 

upwards  at  a  certain  angle  with  the  vertical. 
We  can  represent  ̂ the  displacement  by  a 

diagram  drawn  to  scale,  as  in  Fig.  16, 

where  AB,  BC  represent  the  two  separate 

actual  displacements,  forming  two  sides  of 

a  triangle  taken  in  order,  and  ̂ C  is  what 

we  may  call  the  "  resultant  displacement," 
which  is  the  third  side  of  the  triangle. 

The  body  was  not  actually  displaced  along 

B A  3 

Fig.  16. 

the  line  AC,  but  the  final  result  is  the  same  as  if  it  had  been. 

Ex.  1.  A  man  walks  3  miles  N.E.,  then  2  miles  N.W.,  then  4  miles 
due  S.  Find,  by  drawing  these  displacements  to  scale,  the  magnitude  and 
direction  of  his  resultant  displacement. 

Ex.  2.  A  man  walks  15  ft.  across  a  lift,  which  then  ascends  40  ft.; 
find  by  a  diagram  to  scale  the  magnitude  and  direction  of  his  resultant 
displacement. 

31.  Resolution  of  Displacements.  If  a  body  receives 

a  displacement  from  one  point  to  another,  this  is  equivalent  to 
two  displacements,  one  of  which  may  be  anything  we  choose 

provided  that  the  other  brings  the  body  to  the  same  finishing 

point  as  before. 
\i  AB  represents  (in  magnitude  and  direction)  the  actual 

displacement  of  the  body,  then  two  displacements  represented 

by  AC  I,  C^Bj  or  two  represented 

by  AC2,  C2B,  would  produce  the 
same  result.  So  any  displacement 

represented  by  a  straight  line  is 

equivalent  to  two  which  are  re- 
presented by  two  straight  lines 

forming  any  triangle  with  the 
first,  the  sides  of  the  triangle 

being  taken  in  order  (e.g.  in  Fig.  17  the  two  straight  lines  must 

Fig.  17. 
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be  AC^  and  C^B,  not  AC^,  BG^;  for  a  displacement  represented 

by  BC^  would  move  the  body  from,  not  towards,  B  in  the  second 

movement).  This  process  of  finding  two  displacements  which 

are  together  equivalent  to  one  is  called  "resolving"  that  dis- 

placement into  two  "  components  " ;  it  is  usually  most  convenient 
to  resolve  a  displacement  into  two  others  at  right  angles  to  one 

another,  and  unless  the  contrary  is  stated,  the  components  are 

assumed  to  be  at  right  angles  to  one  another. 

Inspection  of  Fig.  18,  in  which  AG^  is  parallel  to  G^B,  and 

G^B  is  parallel  to  AG y^,  shows  that  q^ 
when  a  displacement  is  resolved 
into  two  components  we  can  take 
either  component  as  the  first 
displacement ;  the  rule  about 
taking  the  sides  of  the  triangle 

in  order  shows  the  "sense"  of 
each  displacement  (e.g.  in  Fig.  18 
it  is  AG^,  not  C^A,  and  G^B, 

not  BGt). 

For  example,  a  displacement  of  5  miles  N.N.E.  is  equivalent 

to,  or  may  be  resolved  into,  one  of  1"91  miles  due  E.  and  4 -62 
miles  due  N. ;  these  values  of  the  components  may  be  found  by 

a  scale  drawing  or  by  trigonometry  (5  sin  22-5°  and  5  cos  22-5°). 
We  can  take  these  components  in  either  order,  going  4-62  miles 

N.  and  then  1*91  miles  E.,  or  first  E.,  then  N.,  as  we  please. 
Ex.  3.  A  man  walks  4  miles  N.W. ;  resolve  his  displacement  into  two, 

one  in  the  N.  and  S.  line,  the  other  E.  and  W. 
Ex.  4.  A  man  walks  4  miles  N.W.  and  then  5  miles  N.E.;  find 

graphically  the  components  of  his  resultant  displacement  in  the  N.  and  E. 
directions. 

Ex.  5.  A  man  walks  1  mile  S.W.,  then  2  miles  due  S.,  then  4  miles  E., 
then  3  miles  N.E.;  how  far  is  he  E.  of  his  starting  point? 

32.  Simultaneous  Displacements.  Suppose  that  a 

body  receives  displacements  in  two  or  more  directions  simul- 
taneously instead  of  one  after  the  other  (for  example,  if  a  man 
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walks  across  a  lift  while  it  is  ascending) ;  then  the  final  result  is 
the  same  in  both  cases.  So  what  we  have  found  for  the  com- 

position and  resolution  of  successive  displacements  holds  good 
for  simultaneous  displacements. 

If  in  addition  we  know  that  the  speed  in  each  of  the 

displacements  is  uniform,  we  can  easily  determine  the  actual 

path  of  the  body  during  the  time  it  is  moving. 
For  example,  suppose  that  a  man  walks  at  a  steady  pace 

of  3  miles  an  hour  across  a  lift  11  ft.  wide  while  it  ascends  at 

a  speed  of  8  ft.  per  sec.     3  miles  an  hour  is  /^  x  88  ft.  per  sec.  or 
11 

4*4  ft.  per  sec,  so  he  will  cross  the  lift  in  j—  or  2|  sees, 
In  this 

/iC 

20ft 

time  the  lift  will  ascend  2|^  x  8 
or  20  ft.  So  his  total  displace- 

ment at  the  end  of  2|^  sees,  is 
represented  by  ̂ C  (Fig.  19)  if 

AB  represents  11  ft.  and  BC 

represents  20  ft.  Note  that  AB 
and  BC  do  not  now  represent 

the  lines  along  which  lie  actually 

moves,  as  they  did  w^hen  the  dis- 
placements were  made  separately. 

If  we  calculate  his  actual  position 

at  any  intermediate  time  we  shall 
find  that  his  displacement  up  to 

8  ft.  that  time  is  in  the  direction  of 

AC ;  for  example,  at  the  end  of 

1  sec.  he  will  have  moved  4*4  ft. 
across  the  lift,  and  it  will  have 

ascended  8  ft. ;  if  we  mark  these 

Pig  19  lengths  AM,  MP  on  the  diagram 
we  find  that  his  displacement  AP 

lies  along  AC,  and  as  M  moves  with  uniform  speed  along  AB, 

P  clearly  moves  with  uniform  speed  along  AC,  since  it  is  always 
vertically  above  M;  so  it  is  clear  that  the  actual  motion  of  the 

A    4-4  ft.    M 
lift.  ̂      B 
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man  is  a  uniform  speed  along  a  straight  line  from  his  starting  to 
his  finishing  point. 

As  another  example,  consider  the  case  of  a  man  walking 

diagonally  across  a  ship  which  is  itself  in  motion;  suppose  he 

walks  at  3  miles  an  hour  in  a  direction  inclined  at  60°  to  the 

(i) 

4.4^
 

17-6 

A^\^ 

8-8 

(ii)  (iii) 

Fig.  20. 

35-2 

52-8 

centre  line  of  the  ship  towards  the  stern ;  suppose  the  ship  is 
90  ft.  broad  and  runs  at  12  miles  an  hour.  Then  his  path  across 
the  deck  will  be  as  in  Fig.  20  (i)  and  his  actual  displacement 

at  the  end  of  a  second  will  be  A-^C-^^  in  Fig.  20  (ii),  the  resultant 

of  two  represented  by  A^B^  (4-4  ft.)  and  B^C^  (17  6  ft.);  A,^C^ 
will  be  found  to  represent  15-9  ft.;  at  the  end  of  2  sees,  it  will 
be  ̂ 2^2  i^   Fig.   20  (iii),  which  is  drawn  to  the  same  scale  as 
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Fig.  20 (ii),  where  Ac^B^  represents  8*8  ft.  and  B^C^  35-2  ft.  and 
A^C^  will  be  found  to  represent  31  "8  ft.;  at  the  end  of  3  sees,  it 
will  be  A^C^  in  Fig.  20  (iv),  and  so  on.  It  is  clear  that  these 

triangles  differ  only  in  size,  and  the  sides  increase  uniformly 

with  the  time ;  so  the  actual  displacepaent  of  the  man  is  con- 
stant in  direction  and  he  moves  in  that  direction  with  constant 

speed. 

*33.  It  is  easy  to  give  a  general  proof  of  this  result,  if  it  be 
desired. 

Suppose  that  a  body  moves  with  uniform  velocity  {y^)  with 
respect  to  another  body  which  itself  is  moving  with  uniform 

velocity  {y^,  and  let  AB^  EC  represent  the  respective  displace- 

ments in  a  certain  time,  ̂ ' sees.     Then  AB  =  v^T  and  BC  =  Vc^T, 

P, 

M 

Fig.  21. 

At  any  other  time  t  sees,  from  the  start  the  displacement  will 
PM 

be  AM=v^t  and  MP  =  vJt;   hence  — W AM 
v-^t and  similarly 

.a.  ±rj.  u-f  V         v-[ 

GB     v^         PM     CB     ̂  
j-n  =  -  y  so  — ^  =  -—  .    So  the  triangles  APM,  ACB  are  similar 

to  one  another,  having  the  angles  A  the  same ;  so  P  lies  on  A  C. 
AP      AC  AC 

Again  jt>  =  jd-     ̂ ^t  AM=v^t,  so  AP^—j^xv^t,  and  AP  is 

proportional  to  t;  i.e.  the  actual  displacement  of  the  body 
increases  uniformly  with  the  time,  or  the  body  actually  moves 
with  uniform  velocity. 
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34.  Composition  and  Resolution  of  Uniform  Velo- 

cities. Since  a  uniform  velocity  is  represented  by  the  displace- 

ment which  takes  place  in  unit  time,  we  can  substitute  "uniform 

velocity"  for  "displacement"  in  what  we  have  found  to  be  true 
of  the  latter.  So  we  have,  if  a  body  has  simultaneously 
two  uniform  velocities,  represented  by  two  sides 
of  a  triangle  taken  in  order,  its  actual  velocity  is 
represented  by  the  third  side. 

For  example,  if  a  ship  is  steaming  through  the  water  at 
7  miles  an  hour,  steering  due  N.,  and  meanwhile  the  tide  is 

carrying  her  due  W.  at  a  speed  of  3  miles  an  hour,  then  the 
ship  has  simultaneously  two  uniform  velocities,  represented  in 

Fig.  22  (i)  by  ̂jS  and  BCj  and  her  actual  velocity  is  represented 

C       C 

7y^ 

(i) 

B       3 

(ii) 
Fig.  22. 

(iii) 

by  AC.  Note  that  neither  A  nor  B  represents  the  ship,  nor 
does  she  move  along  the  actual  lines  AB,  BC  in  an  hour;  these 

lines  are  parallel  to,  proportional  to  and  in  the  same  sense  as,  the 

displacements  which  take  place  in  an  hour,  and  represent  the 

displacements  or  velocities  to  that  extent.  They  can  equally 
well  be  placed  anywhere  in  the  diagram,  but  in  order  to  find  the 

resultant  velocity  they  must  be  drawn  as  two  sides  of  a  triangle 

taken  in  order ;  so  they  can  either  be  as  in  Fig.  22  (i),  or  as  in 

Fig.  22  (ii),  but  not  as  in  Fig.  22  (iii). 
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Ex.  6.  A  motor  boat  crosses  an  estuary  half  a  mile  wide,  going  at  a 
speed  of  8  miles  an  hour  through  the  water  and  steering  always  straight  for 
the  opposite  shore ;  a  tide  of  3  miles  an  hour  carries  her  down  stream. 
Find  her  actual  velocity  by  a  scale  drawing,  and  find  how  far  she  moves 
(with  respect  to  the  land)  in  crossing,  how  far  she  is  carried  down  stream, 
and  the  time  she  takes.     Is  this  last  the  same  as  if  there  was  no  tide  ? 

k 

Ex.  7.  The  motor  boat  of  the  last  example  wishes  to  reach  a  point  on 
the  opposite  shore  exactly  opposite  her  starting  point ;  in  what  direction 
must  she  steer  ? 

She  starts  from  A  and  wishes  to  reach  B,  so  her  resultant  velocity  must 
be  along  AB.  One  of  the  components  is  3  miles  an  hour  parallel  to  the 
shore ;  represent  it  by  A  G,  representing  3  miles  on  some  scale. 

Tide 

a  miles  an  hour 

v« 
A    3       C 

^  Fig.  23. 

We  know  that  the  other  component  is  8  miles  an  hour ;  we  do  not  know 
its  direction,  but  it  may  be  any  line  drawn  from  G,  8  miles  long  on  the  same 
scale.  So  its  end  lies  on  a  circle  with  centre  G,  radius  8  on  this  scale.  In 
order  that  the  resultant  velocity  may  be  along  AB,  the  end  of  this  second 
component  must  be  on  AB,  or  AB  produced,  so  it  will  be  P  at  the  inter- 

section oi  AB  and  the  circle.  The  direction  GP  will  then  be  the  required 
direction. 

Ex.  8.  Find  how  long  the  motor  boat  in  the  last  example  takes  to 
cross  the  estuary.  How  far  does  she  move  (1)  with  respect  to  the  land, 
(2)  through  the  water,  in  doing  so  ? 

35.     Composition    and    Resolution    of   Velocities 

which  are  changing.     Consider  as  an   example  of  a  body 
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whose  velocity  is  changing  both  in  magnitude  and  direction,  a 
bullet  fired  from  a  gun  with  a  muzzle  velocity  of  2000  ft.  per  sec. 

at  an  elevation  of  15°  above  the  horizontal.  Directly  it  has  left 
the  gun  the  resistance  of  the  air  begins  to  reduce  its  speed,  and 

its  weight  begins  to  deflect  it  from  its  straight  path ;  but  at  the 
instant  of  leaving  the  gun  we  know  what  its  velocity  is,  i.e.  the 
uniform  velocity,  with  which  it  would  proceed  if  these  forces 
ceased  to  act,  so  that  it  would  move  2000  ft.  in  the  first  second 

at  an  elevation  of  15°.  As  this  is  a  uniform  velocity,  we  can 
deal  with  it  as  we  have  done  with  other  uniform  velocities,  and 

resolve  it  into  two  components  in  the  same  way.  It  is  con- 
venient to  take  these  components  in  the  vertical  and  horizontal 

directions.     Then  a  scale  drawing  (or  calculation    by  trigono- 

^elo«='^>  Actual  Path 

518 

Fig.  24. 

metry)  shows  that  the  horizontal  component  is  1932  ft.  per  sec, 
and  the  vertical  component  is  518  ft.  per  sec.  (The  horizontal 

component  is  2000  x  cos  15°  and  the  vertical  component  is 
2000  X  sin  15°.) 

It  may  help  in  realising  the  meaning  of  these  ideas  to 

imagine  that  the  sun  is  vertically  overhead  ;  then  the  speed  of 

the  shadow  of  the  shot  on  the  ground  is  the  horizontal  com- 

ponent of  the  velocity  (or  "  the  horizontal  velocity  "  as  it  is  often 
written).  This  shadow  starts  with  a  speed  of  1932  ft.  per  sec, 
but  we  have  not  yet  found  out  whether  it  actually  covers 
1932  ft.  in  the  first  second;  all  we  know  is  that  it  would  do  so 

if  the  forces  on  the  shot  ceased  to  act.  Similarly  the  vertical 
component  can  be  thought  of  as  the  speed  of  the  shadow  of  the 

shot  thrown  on  a  vertical  wall  behind  the  gun  by  a  sun  just 
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setting  in  the  direction  in  which  "the  shot  is  fired ;  if  the  weight 
and  the  resistance  of  the  air  ceased  to  act  this  shadow  would 

rise  518  feet  in  the  first  second. 

Hence  we  see  that  if  a  body's  velocity  is  changing,  we  can 
resolve  or  compound  its  value  at  any  instant  as  though  it  were 
constant. 

Ex.  O.  If  a  man  starts  to  move  at  2  miles  an  hour  across  a  railway 
carriage  which  at  that  instant  is  moving  at  a  speed  of  8  miles  an  hour, 
what  is  his  actual  speed? 

By  compounding  the  two  velocities  we  find  that  his  actual  velocity  at 
the  instant  is  8*25  miles  an  hour  at  an  inclination  of  14°  to  the  rails. 

Ex.  lO.  Eain  is  falling  vertically  at  a  speed  of  120  ft.  per  sec. ;  find  the 
inclination  to  the  vertical  at  which  the  drops,  as  seen  by  a  passenger  in  a 
train  running  at  60  miles  an  hour,  seem  to  fall. 

Ex.  11.  Kain-drops  are  moving  through  the  air  at  a  speed  of  70  miles 
an  hour,  and  are  moving  horizontally  with  the  wind  at  a  speed  of  20  miles 
an  hour;  find  the  angle  at  which  an  umbrella  should  be  held  by  a  man 
standing  still. 

36.  Change  in  Velocity.  If  a  body  always  moves  in 

one  straight  line,  and  is  moving  faster  at  one  time  than  another, 

it  is  easy  to  find  the  change  in  its  velocity.  If  at  both  times 
it  is  moving  in  the  same  direction  along  the  line,  it  is  the 
difference  between  the  speeds  at  the  two  instants,  but  if  in  the 
interval  between  them  the  motion  has  been  reversed  the  change 

in  velocity  is  clearly  the  sum  of  the  speeds.  Since  velocity, 

unlike  speed,  is  called  positive  when  in  one  direction  along  a 

line  and  negative  in  the  other,  the  change  in  both  cases  is  "  the 

difference  of  the  velocities."  For  example  if  at  one  instant  the 
body  has  a  speed  of  3  ft.  per  sec.  along  a  straight  line,  in  the 
direction  from  A  to  £  which  we  will  call  the  positive  direction, 

its  velocity  is  +  3 ;  if  at  a  later  time  its  speed  is  5  ft.  per  sec.  in 

the  same  direction,  its  velocity  is  then  +  5  and  the  change  in  the 

velocity  is  5  —  3  or  2  ft.  per  sec.  But  if  at  the  later  time  its  speed 
is  6  ft.  per  sec.  in  the  direction  £A,  its  velocity  is  then  —  5,  and 

the   change   is   —  5  -  3,   or  —  8  ft.  per  sec.     The  negative  sign 
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implies  that  there  has  been  a  reduction  in  the  velocity  in  the 

positive,  or  A  to  B^  direction  ;  in  the  first  instance  the  positive 
sign  showed  that  the  velocity  had  increased. 

If  a  body  alters  its  direction  of  motion,  the  determination  of 
its  change  of  velocity  is  not  so  simple.  Take  as  an  example  the 
case  of  a  man  walking  into  a  lift  which  starts  upwards  before  he 

reaches  the  opposite  side ;  his  velocity  is  at  first  horizontal,  and 
later  is  obliquely  upwards ;  as  before,  if  AB  represents  his 
velocity  along  the  floor,  and  BC  the  velocity  of  the  lift  when  it 
has  got  up  speed,  AC  will  represent  his  resultant  velocity.  The 
change  in  his  total  velocity  is  clearly  produced  by  and  equal  to 

the  actual   velocity  of   the  lift;    so  BC   represents  the  change 

1^ 

/^ 

Fig,  25. 

which  has  taken  place  in  his  velocity,  altering  it  from  AB  to 
AC.  Again,  when  he  stops  walking,  if  the  lift  continues  to 
rise,  his  velocity  changes  from  ̂ C  to  AD,  and  CD  represents 
the  change  in  his  velocity. 

Hence  in  general  if  we  wish  to  find  the  change  in  velocity  of 

a  body,  we  have  only  to  find  that  velocity  which  compounded 

with  the  first  gives  the  second  velocity.  We  can  do  so  by 
drawing  from  one  point  lines  to  represent  the  two  velocities  of 

the  body,  then  the  line  joining  their  ends  represents  on  the 

same  scale  the  change  in  the  velocity,  and  the  sense  of  this 
change  of  velocity  is  from  the  end  of  the  line  representing  the 

former  to  the  end  of  that  representing  the  latter  velocity. 
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Ex.  12.    At  a  certain  instant  a  cricket  ball  is  rising  at  an  angle  of  45°  to 
the  horizontal  with  a  speed  of  45'4  ft.  per  sec;  two  seconds 

3        later  it  is  falling  at  an  angle  of  45°  to  the  horizontal  with 

the  same  speed.     "What  is  its  change  of  velocity? 
Ao'Ay^   I  In  j'ig^  26  AB  represents  its  former  and  AG  its  latter 

velocity,  so  the  change  is  represented  by  BG.    By  measure- 
ment or  calculation  BG  will  be  found  to  represent  a  velocity 

of  64-4  ft.  per  sec.  vertically. 

45'4X^  !  Note  that  although  the  speed  is  the  same,  the  velocity 
\        has  changed. C 

Y{a'  26.  ^^"  ̂ ®"    -^^  ̂   certain  instant  a  cricket  ball  is  rising  at 
an  angle  of  20°  to  the  horizontal  with  a  speed  of  60  ft.  per 

sec. ;  one  second  later  it  is  falling  at  an  angle  of  11°  42'  to  the  horizontal 
with  a  speed  of  57*5  ft.  per  sec.     Determine  by  a  scale  drawing  its  change  of 
velocity. 

Ex.  14.  A  motor  car  runs  along  a  road  at  15  miles  an  hour,  then  turns 
into  another  road  at  right  angles  and  goes  at  20  miles  an  hour ;  determine 

its  change  of  velocity. 

Ex.  15.  A  man  runs  with  uniform  speed  of  15  miles  an  hour  round  a 
circular  track  of  4  laps  to  the  mile;  determine  his  change  of  velocity  in 
10  sees. 

37.    Motion  of  a  body  projected  horizontally.     If 
you  are  sitting  in  a  train  which  is  running  at  constant  speed, 

and  drop  something,  would  your  experience  lead  you  to  expect 

that  it  would  move  in  the  same  way  as  if  you  had  been  sitting 

in  a  room  when  you  dropped  it  ?  would  you  expect  it  to  hit  the 

floor  vertically  below  where  it  started,  or  perhaps  nearer  to  the 

engine?  Everyone  assumes  that  a  body  in  motion  behaves  in 

the  same  way  in  a  railway  carriage  whether  the  carriage  is  at 

rest  or  in  uniform  motion,  and  acts  on  that  assumption  when 

trying  to  catch  it  when  it  falls  or  is  thrown  to  them.  So  it  is 

fair  to  take  this  experience  as  proof  that  if  a  body  has  a 

horizontal  velocity  when  it  begins  to  fall  freely  under  the  earth's 
attraction,  that  attraction  will  not  alter  the  horizontal  velocity. 

If  it  did  so,  the  body  would  not  appear  to  fall  vertically  to  the 

passenger   who    himself    has   all  the   time   the  same  horizontal 
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velocity,  and  it  would  hit  some  other  point  of  the  floor  of  the 
carriage  than  that  immediately  below  it  when  it  started  to  fall. 
As  a  matter  of  fact  of  course  since  the  carriage  is  moving  it 

does  not  really  move  vertically,  and  would  not  appear  to  do  so 

to  anyone  standing  on. a  platform. 
But  it  would  not  be  fair  to  assume  from  this  experience  that 

the  action  of  the  earth  on  the  body  is  not  affected  by  the 

horizontal  velocity ;  we  should  not  be  likely  to  perceive  the 

difference  if  the  body  only  fell  say  3  "8  ft.  in  the  first  quarter 
second  when  the  train  was  running  at  60  miles  an  hour,  whereas 
we  know  it  would  fall  4  feet  if  the   train  were  at   rest,   such 

Fig.  27. 

difference  in  speed  being  imperceptible  without  careful  measure- 
ment. However  a  simple  experiment  will  show  whether  or  not 

the  acceleration  of  a  body  falling  freely  is  affected  by  any 
horizontal  velocity  which  the  body  has  at  the  start. 

If  we  roll  a  metal  ball  along  a  table,  and  if  at  the  instant 
when  it  reaches  the  edge  we  release  another  ball  from  the  same 
height  so  that  the  latter  falls  straight  downwards,  we  shall  hear 
them  hit  the  floor  at  the  same  moment,  whatever  horizontal 

velocity  the  first  ball  had  when  it  left  the  edge  of  the  table. 
As  it  is  not  easy  to  release  the  second  ball  at  the  exact  instant 

when  the  other  le^-ves  the  table,  it  is  better  to  make  the  rolling 

A,  0 
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ball  release  the  other  at  that  instant  by  working  a  trigger ;  this 

trigger  may  most  conveniently  break  the  circuit  of  an  electro- 
magnet which  supports  the  ball  that  is  to  fall  vertically,  as  in 

Fig.  27.  The  paths  of  the  two  balls  are  indicated  by  dotted 
lines. 

The  result  of  this  experiment  shows  that  the  action  of  a 

constant  force  on  a  body  produces  the  same  effect  whatever  may 

be  the  velocity  of  the  body ;  and  we  have  seen  that  the  velocity 

of  a  body  at  right  angles  to  the  force  that  acts  on  the  bod}^  is 
unaffected  by  that  force.  We  will  now  show  the  latter  by  an 

experiment  which  does  not  require  to  be  made  in  a  railway 
train. 

Fig.  28. 

38.    Path  of  a  water  jet  starting  horizontally.    A 

convenient  way  of  observing  the  path  of  a  body  projected  with 

an  initial  velocity  under  the  earth's  attraction  is  to  use  a  jet  of 
water,  which  is  equivalent  to  a  succession  of  projectiles;  its 
shadow,  thrown  by  a  distant  lamp  at  the  same  level,  can  easily 

be  traced  on  a  piece  of  paper  held  close  to  the  jet.  In  order  to 
keep  the  initial  velocity  constant  for  some  time,  an  arrangement 

called  a  Marriotte's  bottle  should  be  used,  as  shown  in  Fig.  28. 
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If  we  take  any  point  P  on  the  path,  by  measuring  PM  we  can 

deduce  the  time  since  the  particle  of  water  left  A  until  it 

reached  P ;  for  it  is  the  same  time  as  a  particle  falling  freely 

from  rest  would  drop  through  the  vertical  height  PM,  the 
difference  of  level  between  A  and  P.  If  we  now  measure  the 

distance  ̂ if  we  can  deduce  the  average  horizontal  component  of 

the  velocity  of  the  body  during  this  time.  If  we  repeat  this  for 

different  positions  of  P  we  shall  find  that  the  horizontal  com- 

ponent of  the  velocity  is  constant  (neglecting  the  small  reduction 

caused  by  air  resistance). 

Hence,  a  force  produces  no  effect  on  the  motion  of  a  body  at 

right  angles  to  the  force. 

Ex.  16.  A  stone  is  thrown  horizontally  with  a  speed  of  60  ft,  per  sec. 
from  the  top  of  a  cliff  100  ft.  high ;   where  will  it  strike  the  sea  ? 

Call  the  time  before  it  does  so,  t  sees.  In  t  sees,  a  body  falling  freely 

from  rest  would  acquire  a  velocity  of  32*2  x  t  ft.  per  sec,  so  its  average  speed 
would  be  ̂   X  32-2  xt  or  16*1  x  t  ft.  per  sec.  In  t  sees,  at  this  speed  it  would 
cover  16'1  X  <  X  «  or  16- It^  ft.  Now  such  a  body  and  the  stone  we  are  con- 

sidering would  take  the  same  time  to  reach  sea-level,  hence  100=:16-lxf2 

and  f  =  2-49  sees.  As  its  horizontal  velocity  of  60  ft.  per  sec.  remains 
unchanged  during  the  flight,  it  will  travel  horizontally  a  distance  of  60  x  2-49 
or  149-4  ft. ;  so  it  will  strike  the  sea  149-4  ft.  from  the  cliff. 

Ex.  17.  Plot  the  path  of  a  water- jet  issuing  horizontally  with  a  speed 
of  5  ft.  per  sec,  on  a  scale  of  1  inch  to  1  ft. 

Calculate  the  vertical  heights  through  which  it  will  fall  in  "l,  '2,  -3  etc 
sees. ;  the  horizontal  distances  it  will  have  moved  will  then  be  '5,  1*0,  1'5 
etc.  ft.,  and  the  actual  positions  can  be  marked  on  the  diagram  and  a 
smooth  curve  drawn  through  them. 

Ex.  18.  A  stone  is  thrown  horizontally  with  a  speed  of  50  ft.  per  sec; 
find  its  velocity  in  magnitude  and  direction  after  2  sees. 

Compound  a  vertical  velocity  of  2g,  or  64-4,  ft.  per  sec.  with  a  horizontal 
velocity  of  50  ft.  per  sec 

Ex.  19.  A  stone  is  thrown  horizontally  with  a  speed  of  60  ft.  per  sec. 
from  a  cliff,  and  is  seen  to  strike  the  water  3  sees,  afterwards ;  find  the 
angle  at  which  it  does  so. 

39.  Inclined  projection.  Hitherto  we  have  assumed 

that  the  body,  which  falls  freely  and  at  the  same  time  has  a 
5—2 
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uniform  horizontal  velocity,  was  originally  projected  horizontally, 
but  this  was  only  done  for  the  sake  of  simplifying  the  idea ;  the 
effect  of  the  earth  on  a  moving  body  cannot  depend  on  how 

the  motion  started.  So  we  can  apply  our  results  to  a  body 
which  has  started  its  flight  at  any  angle^ 

Suppose  then  that  we  have  a  body  projected  at  an  elevation 

of  60°  above  the  horizontal,  with  a  velocity  of  100  ft.  per  sec. 
Resolve  this  velocity  into  a  horizontal  and  a  vertical  component; 

they  will  be  respectively  100  cos  60°  or  50  and  100  sin  60°  or 
86-6  ft.  per  sec.  Then  the  body  will  retain  this  horizontal 
velocity  of  50  ft.  per  sec.  throughout  the  flight ;  but  the  vertical 

velocity  will  change  exactly  as  with  a  body  projected  vertically 

upwards  with  a  velocity  of  86*6  ft.  per  sec.  From  these  two 
facts  we  can  deduce  anything  we  wish  to  know  about  the  flight 
of  the  body. 

For  example,  to  find  how  long  it  will  be  before  the  body 
comes  down  to  the  same  level  as  its  starting  point.  It  loses 

32-2  ft.  per  sec.  of  its  vertical  velocity  each  second,  so  it  will 

reach  its  highest  point  in  — —  sees. ;  a  body  projected  vertically 

upwards  takes  the  same  time  to  fall  to  its  starting  point  from  its 

highest  point  as  it  did  to  rise  (see  Ex.  11,  chap.  II),  so  the  total 

time  of  flight  of  this  body  is  2  x  -—   or   5-38   sees.      In  that 

time,  since  it  has  a  constant  horizontal  velocity  of  50  ft.  per  sec, 

it  will  travel  horizontally  through  50  x  5 '38   or   269  ft.     So  i£| 
projected  from  the  ground  level,  it  will  strike  the  earth   at  aj 
distance  of  269  ft. 

The   distance   travelled    horizontally   before    the    projectile^ 
returns  to  the  same  level  as  its  starting  point  is  usually  called 

the  "  range  on  the  horizontal  plane." 

Ex.  20.  A  shot  is  fired  at  an  elevation  of  15°  with  a  muzzle  velocity  of 
2000  ft.  per  sec. ;  neglecting  the  resistance  of  the  air,  find  its  range  on  the 
horizontal  plane. 

Sx.  21.     Find  how  high  the  shot  in  Ex.  20  will  rise. 
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Ex.  22.  A  cricket  ball  is  thrown  with  a  speed  of  60  ft.  per  sec;  determine 
its  horizontal  range  if  the  angle  to  the  horizontal  at  which  it  is  thrown  is 

20°,  30°,  40°,  50°,  60°  or  70°.  Make  a  diagram  of  these  ranges,  taking  angles 
of  elevation  as  abscissae  and  ranges  as  ordinates.  What  angle  of  elevation 
gives  the  greatest  range  for  a  given  initial  speed?  What  other  angle  of 

elevation  gives  the  same  range  as  one  of  30°? 

40.  Suppose  we  wish  to  determine  the  position  of  a  pro- 

jectile at  any  instant  of  its  flight ;  we  can  do  so  by  finding  its 

vertical  and  horizontal  displacements  at  that  instant.  For 

example,  if  a  cricket  ball  is  thrown  with  a  speed  of  50  ft.  per 

sec.  at  an  angle  of  60°,  its  initial  horizontal  velocit}^  will  be 

50  cos  60°   or  25  ft.  per  sec,  and  its  vertical  velocity   will  be 

zsfb.per  sec. 

"^^^21-1  ft  per  sec 

<--     soft.   -> 
Fig.  29. 

50  sin  60°   or  43-3   ft.   per  sec.     At  the  end  of  2  sees,   it  will 
have  moved  oQ  ft.  horizontally.      It  loses  32*2  ft.  per  sec.  of  its 

43'3 

vertical  velocity  each  second,  so  it  will  stop  rising  after  — y-^  or 

1*345  sec.    Its  average  vertical  speed  during  that  time  is   ^   

or  21-65  ft.  per  sec,  so  it  will  rise  to  a  height  of  1-345  x  21-65 

or  29-12  ft.     In  the  remaining  -655  sec.  it  will  acquire  a  vertical 

velocity  of  -655  x  32'2  or  21-1  ft.  per  sec,  so  it  will  fall  through 
0  +  21-1 

  2   ^  '6^5  ft-'  o^  ̂ '^l  f*-     Hence  it  is  then  29-12  -  6-91  ft. 

or  22-21  /i5.   above  its  starting  level.     These  give  us  its  actual 
position  after  2  sees,  of  flight. 
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If  we  wish  to  know  its  velocity  then,  we  must  compound  its 

horizontal  and  vertical  velocities  at  that  instant ',  we  have  found 

that  these  are  respectively  25  ft.  per  sec.  and  21-1  ft.  per  sec. 
(downwards) ;  when  compounded  they  give  an  actual  velocity  of 

32-7  ft.  per  sec.  at  an  angle  below  the  horizontal  of  39 J°  nearly. 
These  results  are  shown  in  Fig.  29. 

Ex.  23.  A  stone  is  thrown  with  a  velocity  of  80  ft.  per  sec.  at  an 

elevation  of  45°  above  the  horizontal;  find  its  position  at  the  end  of  the 
first  and  third  seconds  of  its  flight. 

Ex.  24.  A  stone  is  thrown  from  a  cliff  with  a  velocity  of  40  ft.  per  sec. 

at  an  angle  of  depression  of  20°  (below  the  horizontal) ;  find  the  magnitude 
and  direction  of  its  velocity  after  2  sees. 

41.  Newton^s  Second  Law  of  Motion.  We  have 
used  the  motion  of  a  projectile  to  discover  and  illustrate  the 

effect  of  a  constant  force  on  a  body  in  motion  in  any  direction, 
because  it  is  practically  important  and  experiments  on  it  are 

easy  to  make.  We  can  extend  our  results  to  include  all  cases  in 

which  a  constant  force  acts  on  a  body,  as  follows.  We  usually 

talk  of  a  body  being  "at  rest"  when  it  lies  on  the  ground — but 
the  ground  in  England  is  moving  due  east  in  a  circle  round  the 
axis  of  the  earth  at  a  speed  of  about  600  miles  an  hour,  while 
the  earth  moves  in  its  orbit  round  the  sun.  To  make  it  move  in 

this  complicated  way,  a  body  lying  on  the  ground  must  be  acted 

on  by  some  force  which  is  continually  changing  in  magnitude 

and  direction.  Hence,  if  the  effect  of  a  force  on  a  body  de- 
pended in  any  way  on  the  velocity  which  that  body  already 

possessed,  or  on  other  forces  acting  on  it,  then  all  our  experi- 
ments would  have  given  different  results  every  time  we  repeated 

them.  As  they  always  gave  the  same  results  we  may  assume 

that  each  one  of  a  group  of  forces  acting  on  a  body  produces  its 
own  acceleration  independently  of  the  others.  So  the  results 

which  we  have  found  for  a  force  acting  alone  on  a  body  initially 
at  rest  hold  good  for  each  one  of  a  group  of  forces  acting  on  a 

body,  however  the  body  is  moving  when  the  forces  begin  to  act ; 
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an  acceleration  is  produced  in  the  body  in  the  direction  of  the 
force,  and  its  magnitude  is  connected  with  the  magnitude  of  the 

force  and  the  mass  of  the  body  by  the  equation  F—ma^  as 
shown  in  Art.  27. 

Newton  expressed  this  fact  in  his  Second  Law  of  Motion, 

which  we  may  state  in  the  following  way.  If  a  constant 
force  acts  on  a  body,  it  produces  an  acceleration  in 
its  own  direction  which  is  directly  proportional  to  the 
force  and  inversely  proportional  to  the  mass  of  the 
body.  This  is  a  more  general  statement  than  the  equation 
F  =  ma,  since  it  is  true  for  all  units. 

For  example,  suppose  that  a  mass  of  4  lbs.  is  moving  over 

a  smooth  horizontal  plane  (such  as  a  sheet  of  ice)  with  a  velocity 
of  10  ft.   per  sec.    in   the   direction  AB,   and   that   a    constant 

30  ft.  P^f^sec^  _        --,-0 

  >c 

Fig.  30. 

horizontal  force  of  60  poundals  acts  on  it  for  2  seconds  in  the 

direction  AC.  60  poundals  produces  an  acceleration  of  -^  or 
15  ft.  per  sec.  per  sec.  in  a  mass  of  4  lbs.,  i.e.  in  each  second  it 

gives  it  a  velocity  of  15  ft.  per  sec,  so  in  2  sees,  it  will  give  it 
a  velocity  of  30  ft.  per  sec.  So  this  is  the  change  of  velocity 
produced  by  the  force,  and  it  will  be  in  the  direction  AC ;  the 
final  velocity  of  the  body  can  be  found  by  compounding  the  two 

velocities,  10  ft.  per  sec.  and  30  ft.  per  sec,  which  gives  AD  as 

the  final' velocity. 
So  if  two  or  more  forces  act  simultaneously  on  a  body,  the 

separate  changes  of  velocity  produced  by  the  various  forces  must 
be  compounded  together  if  we  wish  to  determine  the  final 

velocity  of  the  body.  It  follows  that  we  are  justified  in  com- 
pounding forces  by  the  triangle  or  polygon  method,  in  dynamics 
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as  in  statics,  and  in  calculating  the  motion  of  the  body  as  if  it 

were  acted  on  by  the  resultant  force  alone.     (See  Ex.  25.) 

Ex.  25.  A  body  of  mass  5  lbs.  initially  at  rest  is  acted  on  by  two 

horizontal  forces,  20  poundals  to  the  E.  and  15  poundals  to  the  N.  Deter- 
mine the  velocity  each  force  would  give  it  in  one  second  if  acting  alone; 

compound  these,  and  find  whether  this  resultant  velocity  is  the  same  as  the 
velocity  produced  in  one  second  by  the  resultant  of  the  two  forces. 

Ex.  26.  A  body  of  mass  2  lbs.  rests  on  a  smooth  plane  inclined  at  an 

angle  of  30°  to  the  horizontal ;   it  starts  with  a  speed  of  10  ft.  per  sec. 

Fig.  31. 

obliquely  up  the  plane  at  an  angle  of  25°  to  a  horizontal  line  in  the  plane, 
and  is  acted  on  by  a  constant  force  of  16  poundals  acting  along  the  plane  at 

an  angle  of  45°  to  the  horizontal,  as  shown  in  Fig.  31.  Find  its  velocity 
after  |  sec. 

The  body  will  be  pulled  down  the  plane  by  the  component  of  its  weight 

(which  is  2  X  32-2  poundals)  parallel  to  the  plane ;  this  component  will  be 
found  to  be  (either  by  calculation  or  drawing)  32-2  poundals.     The  force  of 

805 

Fig.  32. 
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16  poundals  will  produce  in  \  sec.  a  velocity  of  -V-  x  ̂   or  4  ft.  per  sec.  in  the 32*2       1 

body,  and  the  force  of  32-2  poundals  will  produce  a  velocity  of  —^  ̂   ̂ ^^ 
805  ft.  per  sec. 

These  may  be  represented  by  the  lines  AB,  AC  and  AB  lying  in  the 
inclined  plane  as  in  Fig.  32;  the  resultant  of  AB  and  AG  (or  AB  and  BE 
where  BE  is  equal  and  parallel  to  AC)  will  be  AE,  and  the  resultant  of  AE 
and  AD  will  be  AF,  which  represents  the  actual  velocity  of  the  body  after 
the  two  forces  have  acted  on  it  for  half  a  second.  The  magnitude  and 
direction  of  the  velocity  can  be  determined  from  the  scale  drawing. 

INIlSCELLANEOUS    EXERCISES. 

(g  may  he  taken  as  32/f.  per  sec.  per  sec,  and  friction  may  he  neglected.) 

Ex.  1.  A  body  is  projected  horizontally  with  a  velocity  of  30  ft.  per  sec. ; 

determine  its  position  after  -5,  1,  1-5,  and  2  sees,  from  the  start.  Draw  the 
path  of  the  body,  to  a  scale  of  1  inch  to  10  ft. 

Ex.  2.  A  man  fires  a  bullet  with  a  velocity  of  2200  ft.  per  sec.  from  a 
rifle  held  horizontally  5  ft.  from  the  ground ;  at  what  distance  from  his  feet 
will  the  bullet  hit  the  ground  ? 

Ex.  3.  A  jet  of  water  moves  5  ft.  (measured  horizontally)  while  dropping 

1-44  ft. ;  what  was  the  initial  horizontal  velocity,  and  what  the  final  velocity? 

Ex.  4.  A  shot  is  fired  horizontally  at  1400  ft.  per  sec.  from  a  tower 
100  ft.  high.  Find  the  time  of  flight  and  the  distance  from  the  foot  of  the 
tower  at  which  it  strikes  the  earth. 

Ex.  5.  A  gun  is  fired  at  an  elevation  of  6°  with  a  muzzle  velocity  of 
2000  ft.  per  sec,  the  muzzle  being  20  ft.  above  the  sea.  Find  (1)  the  time 
which  will  elapse  between  firing  and  the  instant  when  the  shell  is  again 
20  ft.  above  the  sea,  (2)  the  time  between  the  instant  when  the  shell  is 
again  20  ft.  above  the  sea  and  the  instant  of  striking  the  water ;  hence  find 

(3)  the  width  of  the  area  in  which  it  would  be  dangerous  for  a  ship  to  be 
whose  hull  extends  20  ft.  above  water  line. 

Ex.  6.  An  aviator  travelling  at  60  miles  an  hour  at  a  height  of  800  ft. 
wishes  to  drop  a  bomb  on  a  certain  spot ;  at  what  horizontal  distance  from 
the  spot  must  he  release  it  ? 

Ex.  7.  A  stone  is  thrown  at  an  elevation  of  40"^,  with  a  speed  of  24  ft. 
per  sec.  How  long  will  it  be  in  the  air,  and  how  high  will  it  rise  ?  What 
will  be  its  position  and  speed  after  half  a  sec.  ? 
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Ex.  8.  A  man  running  due  E.  at  20  ft.  per  sec.  throws  a  ball  with  a 

speed  of  30  ft.  per  sec.  so  that,  if  he  had  been  at  rest  when  he  threw  it,  it 

would  have  travelled  30°  to  the  W.  of  S.  Find  the  magnitude  and  direction 
of  the  actual  velocity  of  the  ball. 

Ex.  9.  A  man  walks,  facing  towards  the  W.,  at  4  miles  an  hour  across 

the  deck  of  a  steamer  which  is  "travelling  due-  N.  at  10  miles  an  hour.  In 
what  direction  and  at  what  pace  is  he  actually  travelling  with  respect  to  the 
earth  ? 

Ex.  lO.  A  stone  is  dropped  from  the  window  of  a  train  into  a  river 
50  ft.  below  ;  speed  of  train  30  miles  an  hour.  Find  how  far  the  stone  will 
travel  horizontally  before  reaching  the  water,  and  how  far  the  train  will  then 
have  travelled. 

Ex.  11.  A  boat  is  rowed,  so  that  it  would  travel  at  6  miles  an  hour  in 
still  water,  across  a  stream.  To  travel  straight  across  the  boat  has  to  be 

headed  in  a  direction  inclined  at  60°  to  the  bank.  Find  the  pace  of  the 
stream.  If  the  stream  is  200  yds.  wide,  how  long  will  it  take  to  cross  it  ? 
Find  the  time  it  takes  to  cross  it  if  the  boat  is  headed  straight  for  the  other 

shore,  and  the  distance  it  is  carried  down  stream  in  the  latter  case. 

Ex.  12.  A  train  is  moving  N.N.W.  with  a  speed  of  30  miles  an  hour; 
what  is  its  speed  to  the  N.? 

Ex.  13.  A  bird  50  yds.  away  is  flying  N.  at  40  miles  an  hour,  and  a 
man  due  W.  of  the  bird  fires  straight  at  it.  If  the  shot  travels  at  1200  ft. 
per  sec,  how  far  behind  the  bird  will  the  shot  pass  ? 

Ex.  14.  The  record  throw  for  a  cricket  ball  is  127  yds.  1  ft.  3  ins.  Find 
the  least  initial  velocity  that  the  ball  could  have  received,  assuming  that  the 

maximum  range  is  given  by  throwing  at  an  elevation  of  45°. 

Ex.  15.  What  record  would  be  set  up  on  the  moon,  if  the  initial 
velocity  of  the  cricket  ball  were  the  same  as  in  Ex.  14,  given  that  the 

acceleration  of  gravity  there  is  4-9  ft.  per  sec.  per  sec.  ? 

Ex.  16.  A  bullet  is  fired  from  a  rifle  4  ft.  above  the  ground  with  a 
muzzle  velocity  of  2000  ft.  per  sec,  so  as  to  strike  a  target  at  500  yds.  at 
the  same  height  of  4  ft.  above  the  ground.  Show  that  the  rifle  must  have 
an  elevation  of  about  20  minutes,  and  that  a  man  6  ft.  2  ins.  in  height  could 
stand  safely  half  way  between  the  target  and  the  rifle. 

Ex.  17.  A  shot  is  fired  from  a  gun  at  an  elevation  of  20°,  with  a 
muzzle  velocity  of  2200  ft.  per  sec.  What  are  the  horizontal  and  vertical 
components  of  this  muzzle  velocity?  How  long  will  it  take  the  shot  to 
reach  the  top  of  its  flight? 



Miscellaneous  Exeixises  75 

Ex.  18.  A  gun  is  fired  at  an  elevation  of  30°  and  the  range  is  found  to 
be  11,500  yds.     Find  the  muzzle  velocity  in  ft.  per  sec. 

Ex.  19.  A  sledge  party  is  travelling  due  N.  by  the  stars  at  the  rate  of 
10  miles  a  day  over  an  ice-floe  which  is  drifting  S.W.  at  15  miles  a  day. 
Find  the  direction  and  speed  at  which  the  party  is  actually  moving. 

Ex.  20.  A  boat  is  rowed  at  right  angies  to  the  banks  of  a  straight 
river,  at  a  speed  through  the  water  half  as  fast  again  as  the  stream  flows. 
It  reaches  the  opposite  bank  2  miles  below  the  starting  point.  Find  the 
breadth  of  the  river. 

Ex.  21.  A  rider  in  a  circus  is  standing  on  a  horse  which  is  going 
steadily  at  12  miles  an  hour,  and  he  has  to  jump  through  a  hoop  whose 

centre  is  4  ft.  above  the  horse's  back,  and  to  land  on  the  horse  again  as 
before.  In  what  direction  should  he  jump,  what  should  be  his  initial 
vertical  velocity,  how  long  will  he  be  in  the  air,  how  far  from  the  hoop  must 
he  be  when  he  jumps? 

Ex.  22.  A  man  running  straight  down  the  field  at  20  ft.  per  sec.  passes 
a  football  with  such  strength  that  if  he  had  been  at  rest  when  he  threw  it, 
it  would  have  gone  at  30  ft.  per  sec,  and  in  such  a  direction  that  it  would 

have  been  at  an  angle  of  45°  behind  the  line  straight  across  the  field. 
Determine  the  direction  in  which  the  ball  actually  moves;  is  it  a  " forward " 

? 

Ex.  23.  Water  issues  from  a  nozzle,  whose  diameter  is  |  inch,  at  an 

elevation  of  60°,  and  travels  a  horizontal  distance  of  15  ft.  before  it  returns 
to  the  same  level.  Given  that  1  cub.  ft.  of  water  weighs  62^  lbs.,  calculate 
the  weight  of  water  issuing  per  minute. 

Ex.  24.  An  arrow  shot  from  a  bow  has  a  range  of  300  yds.,  and  just 
clears  a  tree  60  ft.  high  when  at  its  greatest  height.  Find  its  velocity  at 
starting. 
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CHAPTER  Y 

WORK    AND    POWER 

42.  Useful  Work.  When  a  force  acts  on  a  machine  or 

a  body,  it  may  or  may  not  do  useful  work.  For  example,  suppose 
the  work  to  be  done  is  to  raise  the  anchor  of  a  yacht;  if  you 

exert  a  force  on  the  capstan  bar,  but  are  unable  to  exert 

sufficient  force  to  move  the  anchor,  you  do  not  do  any  useful 

work.  Again,  suppose  steam  is  admitted  into  the  cylinder  of  an 

engine  which  has  stopped  "on  a  dead  centre,"  the  steam  will 
exert  a  pressure  on  the  piston,  but  however  large  this  pressure 

may  be,  it  will  not  do  useful  work  until  the  piston  is  in  a  position 
to  yield  to  the  pressure. 

In  the  former  case,  you  are  doing  useful  work  when  you  are 

exerting  a  force  which  successfully  overcomes  the  weight  of  the 

anchor,  that  is  while  you  exert  a  force  on  a  body  which  yields  to 
the  force ;  in  the  latter  case,  the  steam  does  useful  work  while  it 

successfully  overcomes  the  resistances  which  oppose  the  motion 
of  the  engine. 

Contrast  with  this  the  force  which  the  table  exerts  on  a  book 

lying  on  the  table ;  it  supports  its  weight,  and  to  that  extent  it 

is  "useful,"  but  it  cannot  be  said  to  be  "doing  work,"  for  it 
is  only  exerting  a  passive  resistance.  In  the  same  way,  when 
a  train  is  running  along  a  level  line,  although  the  rails  exert  an 

upward  pressure  on  it  to  support  its  weight,  they  cannot  be  said 
to  be  doing  useful  work;  the  train  is  moving,  but  not  in  such 
a  direction  as  to  yield  to  the  pressure  of  the  rails,  which  is  again 
a  passive  resistance. 



Work  and  Power  77 

So  we  see  that  a  force  does  not  do  work  unless  its  point 

of  application  moves,  and  the  movement  must  be  in  the  direction 

of  the  force ;  we  can  now  give  a  precise  definition  of  the  term. 

Work  is  done  by  a  force  when  its  point  of  application  moves  in 

the  direction  of  that  force. 

We  can  decide  on  any  method  of  measuring  it ;  but  the  most 

simple  happens  to  be  the  most  suitable  method,  and  we  measure 

the  work  done  by  the  product  of  the  force  and  the  distance 

moved  in  the  direction  of  the  force.  The  unit  of  work  naturally 

depends  on  whether  we  are  expressing  force  and  distance  in 

British  or  c.G.s.  units;  if  the  former,  the  unit  of  work  is  called 

a  "foot-poundal,"  and  is  the  work  done  by  1  poundal  when  its 
point  of  application  moves  1  foot ;  if  the  latter,  the  unit  of  work 

is.  called  an  "erg,"  and  is  the  work  done  by  1  dyne  when  its 
point  of  application  moves  1  cm.  Engineers  commonly  take  as 

the  unit  the  work  done  by  a  force  of  1  lb.  wt.  when  its  point  of 

application  moves  1  foot;  this  is  called  a  "foot-pound." 

Ex.  1.  A  weight  of  56  lbs.  is  pulled  up  by  a  rope  through  a  vertical 
height  of  20  ft. ;   how  much  work  is  done  on  it  ? 

The  force  exerted  by  the  rope  is  56  x  32-2  poundals ;  so  the  work  done 
is  56  X  32-2  x  20  ft. -poundals.  Expressed  in  engineer's  units,  the  work  is 
56x20  ft. -lbs. 

Ex.  2.  A  weight  of  5  kilogrammes  is  pulled  up  steadily  through  a 
vertical  height  of  3  metres  ;   how  much  work  is  done  on  it  ? 

Ex.  3.  A  ton  of  coal  is  lifted  from  the  bottom  of  a  mine  500  ft.  deep ; 
how  much  work  is  done  ? 

In  these  examples  we  assume  that  the  upward  pull  of  the 

rope  is  equal  to  the  weight  of  the  body ;  so  there  will  be  no 

resultant  force  on  the  body  and  it  must  be  moving  with  uniform 

speed.  In  order  to  get  up  this  speed  at  the  beginning  of  the 

motion  we  know  that  the  pull  of  the  rope  must  have  been  greater 

than  the  weight  of  the  body  (if  m  lbs.  be  the  mass  of  the  body 

and  a  ft.  per  sec.  per  sec.  be  its  acceleration,  the  pull  must  have 

been  greater  than  the  weight  by  ma  poundals).  But  in  this  case 

and  until  further  notice  we  consider  the  work  done  during  the 
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time  while  the  speed  is  constant ;  later  we  will  deal  with  the 

work  done  while  the  body  is  getting  up  or  losing  speed.  We 
shall  assume  then  for  the  present  that  the  body  is  moving 

steadily ;  whether  its  speed  is  great  or  small  makes  no  difference 
to  the  work  done  during  a  definite  displacement,  though  of 
course  the  work  is  done  in  a  shorter  time  if  the  speed  is  high. 

43.  Connection  between  the  ft. -lb.  and  the  ft.- 

poundal.  A  body  whose  mass  is  10  lbs.  is  attracted  to  the 

earth  by  a  force  which  would  give  it  an  acceleration  of  32-2,  or  g, 
ft.  per  sec.  per  sec.  if  this  were  the  only  force  acting  on  it ; 

so  this  force  is  10  x  32-2  or  10^  poundals.  If  it  is  lifted  steadily 
through  a  vertical  height  of  2  ft.,  the  work  done  by  the  lifting 

force  is  20^  ft.-poundals.  Since  the  weight  of  the  body  is 
10  lbs.  wt.,  the  work  done  on  it  is  20  ft.-lbs.  Hence  we  see 

that  the  same  work  is  expressed  by  20^  ft.-poundals  and  20  ft.- 
lbs.  ;  and,  generally,  if  the  value  of  a  certain  amount  of  work  is 

expressed  in  ft.-lbs.,  its  value  in  ft.-poundals  is  found  by  multi- 

plying by  g.  Similarly  we  can  express  the  value  in  ft.-lbs.  of 
a  certain  amount  of  work  expressed  in  ft.-poundals  by  dividing 
the  latter  number  by  g,  or  32  2. 

It  is  convenient  to  express  a  result  in  both  units,  if  the 
British  system  is  used. 

Ex.  4.  A  train  weighs  180  tons  and  runs  along  a  level  line  at  30  miles 
an  hour;  the  resistance  to  its  motion  caused  by  axle  friction,  air  resist- 

ance, etc.  may  be  taken  as  being  10  lbs.  wt.  a  ton.  Find  the  work  done  by 
the  engine  in  half  a  minute. 

The  force  is  180  x  10  or  1800  lbs.  wt. ;  in  half  a  minute  it  moves  through 

i  mile  or  1320  feet ;  hence  the  work  is  1800  x  1320  ft.-lbs. ,  or  7*65  x  10^  ft.- 
poundals. 

44.  Work  done  by  a  force  oblique  to  the  direction 

of  motion.  Suppose  that  you  are  dragging  a  stone  along  a 

rough  surface  by  means  of  a  rope  as  in  Fig.  33.  The  movement 
of  the  stone  is  not  in  the  direction  of  the  force,  or  rather  it  is 
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not  altogether  in  that  direction;  so  we  must  extend  our  definition 
of  work  and  its  measurement  to  cover  such  a  case.  We  can  do 

so  in  two  ways,  which  give  the  same  result ;  either  by  saying 

"the  work  is  measured  by  the  product  of  the  force  and  the 

component  of  the  displacement  in  the  direction  of  the  force,"  or 
"the  work  is  measured  by  the  product  of  the  displacement  and 

the  component  of  the  force  in  the  direction  of  the  displacement." 
It  is  assumed,  as  usual,  that  the  resolution  is  to  be  made  into  two 

components  at  right  angles  to  one  another. 

For  example,  suppose  the  force  is  1500  poundals  inclined 

at  30°  to  the  horizontal,  and  that  the  stone  is  dragged  along  the 
ground  horizontally  for  a  distance  of  20  feet.  If  we  resolve  the 
force  into  a  horizontal  and  a  vertical  component,  either  by  scale 

Fig.  33. 

drawing  or  by  trigonometry,  the  former  component  is  found  to 

be  1500  cos  30°,  about  1299  poundals;  hence  the  work  done  is 
1299  X  20  or  25^980  ft.-poundals.  If  we  resolve  the  20  ft.  dis- 

placement along  and  perpendicular  to  the  direction  of  the  force, 

the  former  component  will  be  found  to  be  20  cos  30°,  about 
17-32  ft. ;  hence  the  work  done  is  1500  x  17-32  or  25^980  ft.- 
poundals,  as  before. 

It  will  be  seen  that  according  to  this  definition  no  work  is 

done  by  the  component  of  the  force  perpendicular  to  the  displace- 
ment. 

45.  Work  done  in  raising  a  weight  by  different 

paths.  Take  the  case  of  a  garden  roller  resting  on  a  slope,  as 

in  Fig.  34.    Let  the  gradient  of  the  slope  be  1  in  n  (i.e.  AB—,  1  ft. 
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and  AC  =  n  ft.),  and  let  the  weight  of  the  roller  be  200  lbs. 
Suppose  the  roller  is  steadily  dragged  up  the  slope  by  a  force 
P  lbs.  wt.  parallel  to  the  surface  of  the  sloping  ground  and  that 
the  frictional  resistances  may  be  neglected.  We  will  first  find 
what  this  force  P  must  be.  Consider  the  forces  that  act  on 

the  roller ;  they  are  (i)  its  weight  200  lbs.  wt.  vertically  down- 
wards, (ii)  P  lbs.  wt.  parallel  to  the  slope  (these  act  through 

the  centre  of  the  roller)  and  (iii)  some  force  exerted  by  the 
ground.  This  last  must  also  act  through  the  centre  of  the  roller, 

since  all  three  forces  must  meet  in  a  point ;  hence  it  is  at  right 

angles  to  the  slope.     Since  there  is  no  acceleration,  the  forces  on 

^'200  lbs.  wL 

Fig.  34. 

the  roller  must  be  in  equilibrium ;  so  if  we  resolve  (i)  along  and 

perpendicular  to  the  slope,  the  component  along  the  slope  must 

equal  P  lbs.  wt. ;  hence  P  =  -  x  200  lbs.  wt.    (See  Fig.  34  (ii)  for Yi 

the  force  diagram,  which  is  a  triangle  similar  to  ABC.) 

Therefore  as  the  roller  moves   up  the  slope,  the   "  tractive 

force  "  P  does  work  at  the  rate  of  -  x  200  ft. -lbs.  for  each  foot  it 71 

moves  up  the  slope,  or  200  ft. -lbs.  for  each  n  ft.  it  moves  up  the 
slope.  But  when  it  moves  n  ft.  up  the  slope  it  rises  through 
a  vertical  height  of  1  ft.  Hence  the  work  done  in  raising  the 
roller  through  1  ft.  vertically  is  the  same  whether  it  is  lifted 

vertically  or  rolled  up  a  slope  of  1  in  n. 
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Next  suppose  that  the  force  P,  instead  of  being  parallel  to 
the    surface    of    the    ground,    is 
inclined  to  it  as  in  Fig.  35.     As 

before,    the   component   of    the 

weight  of  the  roller  parallel  to 

the  slope  is  -  x  200  lbs.  wt.    Sup- n 

pose  that  we  resolve  P  along  and 
perpendicular  to  the  slope ;  since 
there    is    no    acceleration,    the 

former  component  must  be  equal 

to  -  X  200  lbs.  wt.,  and  this  is n 
Fig.  35. 

the  only  part  of  the  "tractive  force"  which  does  work  as  the 
roller  moves.  Hence  as  before  the  work  done  is  the  same  for 

a  given  vertical  rise  whatever  be  the  gradient  of  the  slope.  The 

other  component  of  P,  which  is  perpendicular  to  the  slope,  reduces 

the  pressure  of  the  roller  on  the  ground,  but  by  our  definition 
does  no  work  on  the  roller  as  it  moves  along  the  ground. 

The  same  reasoning  can  be  applied  in  the  case  of  a  body 

being  dragged  up  a  perfectly  smooth  slope;  if  however  there 
is  a  frictional  resistance  to  be  overcome,  the  tractive  force  is 

increased  and  the  work  done  will  be  greater  than  in  the  case 
of  a  direct  vertical  lift. 

46.  You  may  be  quite  ready  in  a  general  way  to  agree  that 
a  force  can  do  no  work  unless  it  causes  the  body  on  which  it  acts 

to  move  to  some  extent  in  the  direction  in  which  it  acts,  and  yet 
you  may  hesitate  to  accept  this  definition  as  reasonable  in  some 

particular  cases.  Suppose  for  example  that  a  boat  {A  in  Fig.  36) 
has  to  be  towed  up  a  river  by  a  man  B  walking  on  the  towing 

path,  and  that  the  tow-rope  is  of  such  a  length  that  it  makes  an 

angle  30°  with  the  direction  of  motion  of  the  boat.  Suppose  the 
tension  of  the  rope  is  15  lbs.  wt. ;  then  resolving  this  force  into 
two  components  at  right  angles,  that  in  the  direction  of  motion 

A.  6 
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is  15  cos  30°  or  13  lbs.  wt.,  and  the  other  is  15  sin  30°  or 

7-5  lbs.  wt.  The  roan  keeps  up  a  pull  of  15  lbs.  wt.,  and  so 

might  expect  to  do  15  ft.-lbs.  of  work  for  every  foot  he  moves 

along  the  tow-path,  yet  by  our  definition  he  only  does  13  ft.-lbs. 
The  reason  is  that  the  second  component  of  the  force  he  exerts 

(i.e.  7 '5  lbs.  wt.)  is  wasted  in  a  useless  effort  to  pull  the  boat 
towards  the  bank,  which  is  frustrated  by  the  rudder ;  in  ordinary 

language  we  say  that  "he  is  working  at  a  disadvantage,"  by 
which  we  mean  that  only  part  of  the  force  which  he  exerts  does 

work  when  he  moves,  and  that  the  other  part  of  the  force  does 

not  succeed  in  effecting  anything,  i.e.  does  no  "work."  If  he 
uses  a  longer  tow-rope  he  will  not  work  at  such  a  disadvantage ; 

Fig.  36. 

he  need  not  exert  so  large  a  force,  because  the  component  of  that 

force  which  is  used  in  doing  work  is  now  a  larger  fraction  of  the 
force  he  exerts.  But  in  both  cases  the  actual  work  which  he 

does  is  the  product  of  the  distance  he  moves  and  the  component 

of  the  force  he  actually  exerts  in  that  direction. 

47.  We  may  anticipate  a  possible  difficulty  by  carrying  the  enquiry  to 
a  further  stage.  Not  only  does  the  component  perpendicular  to  the  bank 
do  no  work,  but  it  compels  the  man  to  do  more  work  than  would  suffice  to 
pull  the  boat  up  stream  if  the  tractive  force  were  applied  to  the  best 

advantage.  For  the  rudder  has  to  be  put  on,  and  this  increases  the  boat's 
resistance,  and  consequently  the  component  of  the  force  up  the  stream 
necessary  to  keep  it  moving.  Nevertheless  it  is  still  true  that  the  work 
actually  done  by  the  man  is  the  product  of  this  component  and  the  distance 
he  moves. 

I 
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Contrast  with  this  the  example  given  in  Art.  44  of  a  man  dragging  a 
stone  over  a  rough  horizontal  surface.  Here  the  component  of  the  tractive 
force  perpendicular  to  the  surface  reduces  the  pressure  between  the  stone 

and  the  surface,  and  so  decreases  the  frictional  resistance  to  the  stone's 
motion.  Hence  in  this  case  this  component  does  no  work,  and  decreases 
the  work  which  the  man  must  do  to  move  the  stone  through  a  given 
distance.  But  the  work  actually  done  is  as  before  measured  by  the  product 
of  the  distance  moved  into  the  component  of  the  force  actually  exerted. 

Again,  take  the  case  of  a  man  moving  a  roller  over  a  soft  lawn ;  assume 
that  the  man  is  so  tall  that  the  handle  slopes  upward  at  a  considerable 
angle  with  the  horizontal.  If  he  pushes  the  roller,  the  vertical  component 
of  the  force  he  exerts  will  increase  the  effective  weight  of  the  roller ;  if  he 
pulls  it,  he  will  reduce  its  effective  weight.  In  the  former  case  the  roller 
will  sink  deeper  and  the  horizontal  component  of  the  force  will  be  greater, 

so  he  will  do  more  work  for  a  given  displacement.  But  the  vertical  com- 
ponent will  itself  do  no  work  in  either  case ;  it  can  only  cause  a  change  in 

the  horizontal  component,  and  thereby  indirectly  affect  the  amount  of 
work  done. 

48.  Friction  between  dry  solids.  If  a  heavy  block, 

such  as  a  14  lb.  weight,  is  dragged  at  a  steady  rate  along  a 
horizontal  surface,  such  as  a  table,  some  force  is  needed  to  keep 

it  moving.  The  "frictional  resistance"  to  sliding  motion  can  be 
measured  by  using  a  spring  balance ;  the  results  of  such  experi- 

ments will  not  agree  very  accurately  among  themselves,  but 
we  shall  find  that  the  following  laws  are  approximately  true. 

I.  The  frictional  resistance  does  not  depend  on  the  area  of 
the  surfaces  in  contact. 

This  can  be  tested  by  using  a  rectangular  block,  whose  faces 
are  of  different  sizes,  and  measuring  the  friction  when  it  stands 
on  different  faces. 

II.  The  frictional  resistance  does  not  depend  on  the  speed 
of  sliding. 

III.  The  frictional  resistance  is  proportional  to  the  normal 
pressure  between  the  sliding  surfaces. 

This  can  be  tested  by  putting  weights  on  the  block.  For  an 
iron  block  sliding  on  a  sheet  of  iron  it  will  be  found  that  the 

6—2 
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frictional  resistance  to  sliding  is  about  one-seventh  of  the  weight 

of  the  block.  This  is  usually  expressed  by  the  phrase  "the 

coefficient  of  friction  of  iron  on  iron  is  ̂ ";  in  general  the  ratio 
of  the  frictional  resistance,  when  slipping  takes  place,  to  the 

normal  pressure  between  the  surfaces  is  called  the  "coefficient  of 
friction." 

The  pressure  between  the  surfaces  can  of  course  be  produced 

by  any  means,  not  solely  by  the  weight  of  one  body,  and  the 

laws  hold  equally  well ;  for  example,  the  pressure  of  the  rails  at 
a  curve  against  the  flanges  of  the  railway  carriage  wheels,  or  of 
a  rope  coiled  round  a  post.     It  is  important  to  realise  clearly 

y/4/65.  wt. 

'  f^  Ihs.  wt. 

Fig.  37. 

that  "the  pressure  between  the  surfaces"  is  the  component 
perpendicular  to  the  surface  of  the  force  with  which  the  two 
bodies  in  contact  react  on  one  another.  For  example,  suppose 

an  iron  14  lb.  weight  is  slipping  down  a  sloping  plate  of  iron,  the 

gradient  of  which  is  1  in  2,  as  in  Fig.  37.  Then  the  weight  is 
acted  on  by  two  forces,  14  lb.  wt.  vertically  downwards,  and  the 
force  with  which  the  iron  plate  acts  on  it.  We  cannot  say  that 

these  two  forces  are  equal  and  opposite,  because  we  do  not  know 

that  the  iron  weight  is  moving  with  constant  velocity ;  if  it  has 

an  acceleration,  they  are  not  equal  and  opposite.     But  whatever 
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this  reaction  between  the  bodies  may  be,  it  can  be  resolved  into 

a  component  perpendicular  to  the  plate  and  one  parallel  to  it;  so 

also  can  the  weight  of  the  14  lb.  mass.  Then  we  know  that  the 

components  of  these  two  forces  which  are  perpendicular  to  the 

plate  must  be  equal  and  opposite,  for  the  iron  weight  has  no 

acceleration  in  their  direction ;  if  one  of  them  were  greater  than 

the  other  the  iron  weight  would  not  remain  in  contact  with  the 

surface.  Hence  the  normal  pressure  between  the  bodies  is  equal 

to  the  component  of  the  weight  of  the  14  lb.  mass  perpen- 
dicular to  the  plate.     By  the  triangle  of  forces,  this  component 

is  14x  V^-^  or  12-13  lbs.  wt. 

The  frictional  resistance  is,  then,  one-seventh  of  this,  or 

1-73  lbs.  wt.  (and  not  one-seventh  of  14  lbs.  wt.). 

By  compounding  these  two  components  we  can  if  we  wish  find  the  total 
reaction  between  the  iron  weight  and  plate,  but  this  is  of  small  importance. 

It  should  be  noticed  that  the  two  components  parallel  to  the 

sloping  plate  do  not  balance  one  another,  so  the  iron  weight 

is  slipping  down  it  with  an  acceleration;  for  the  component 

of  the  weight  parallel  to  the  plate  is  J  x  14  lbs.  wt.  down  the 

plane  and  the  frictional  resistance  is  1*73  lbs.  wt.  up  the  plane. 

Ex.  5.  Find  the  force  needed  to  haul  the  weight  steadily  up  the  sloping 
plate  described  above. 

The  component  of  the  weight  down  the  plane  is  as  before  7  lbs.  wt. 

and  the  frictional  resistance  (1-73  lbs.  wt.)  now  acts  in  the  same  sense  as 
this  component. 

Ex.  6.  A  14  lb.  wt.  is  dragged  steadily  up  an  iron  plate  sloped  to  a 
gradient  of  1  in  10 ;  find  the  necessary  force. 

Ex.  7.  Find  the  force  needed  to  drag  the  weight  in  Ex.  6  steadily  down 
the  slope. 

Ex.  8.  Calculate  the  work  done  in  moving  the  weight,  in  each  of  the 
above  examples,  sufficiently  to  cause  a  vertical  displacement  of  one  foot. 

49.  Starting  Friction.  Take  a  heavy  block  at  rest  on 

a  horizontal  table,  and  attach  a  spring  balance  to  it ;  apply  an 
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increasing  horizontal  pull  on  the  spring  balance.  It  will  be  seen 

that  when  the  pull  reaches  a  certain  value  the  block  begins  to 

move,  and  that  when  it  is  started  a  smaller  pull  will  keep  it 

moving  steadily.  Hence  the  frictional  resistance  to  slipping 

is  greater  just  before  slipping  begins  than  when  slipping  has 

begun.  This  is  a  matter  of  some  importance  in  starting  or 

stopping  a  railway  train  or  motor  car;  if  the  brakes  are  put 

on  too  hard,  so  that  the  wheels  slip,  the  maximum  retarding 

force  of  friction  is  not  used,  and  if  in  starting  a  heavy  train  the 

steam  is  admitted  into  the  cylinders  too  rapidly,  the  driving 

wheels  may  fly  round  and  the  engine  will  not  exert  so  great 

a  tractive  force  as  if  the  wheels  were  just  on  the  point  of 

slipping. 

The  greatest  tractive  force  which  an  engine  can  exert  on 

a  train  is  equal  to  the  maximum  force  of  "sticking"  friction 
between  the  driving  wheels  and  the  rails;  this  depends  on  the 

load  on  the  driving  wheels.  Hence  it  is  important  that  the 

driving  wheels  should  carry  as  much  as  possible  of  the  weight 

of  the  engine.  Again,  in  order  to  stop  the  train  rapidly,  brakes 

should  be  fitted  to  the  wheels  of  every  coach,  and  not  only  on  the 

engine. 

Ex.  9.  The  load  on  the  driving  wheels  of  a  locomotive  is  30  tons,  and 
the  eoefl&cient  of  friction  between  rails  and  wheels  is  one-sixth.  What  is 

the  greatest  force  it  can  exert  ?  If  its  mass  is  60  tons,  what  is  the  greatest 
speed  it  can  attain  in  10  sees.  ? 

Ex.  lO.  If  the  engine  of  Ex.  9  is  hauling  a  train  of  mass  100  tons,  and 
if  the  engine  and  train  need  a  force  of  10  lbs.  wt.  per  ton  to  overcome  their 
frictional  resistance,  what  is  the  greatest  speed  it  can  attain  in  45  sees.  ? 

The   greatest   driving  force  which   the   engine   can  exert  is  ̂   x  30,  or 

5  tons  wt.  or  5  X  2240  x  32-2  poundals.     The  constant  frictional  resistance  is 
150  X  10  lbs.  wt.  or  150  x  10  x  32*2  poundals.     So  the  resultant  accelerating 
force  is  (11200  -  1500)  x  32-2  or  9700  x  32-2  poundals.    The  mass  to  be  accele- 

9700  X  32*2 rated  is  150  tons  or  150  x  2240  lbs.,  hence  the  acceleration  is  — — - — ^-.^  ft. 150  X  2240 

^  *u  ^    wu        ;i    t  An         '   •    AK     9700x32-2 per  sec.  per  sec,  and  the  speed  at  the  end  oi  45  sees,  is  45  x  -zttr — ^tttttt  ov 150  X  2240 

41*84  ft.  per  sec. 
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Ex.  11.  If  the  brakes  on  an  engine  and  train  act  on  all  the  wheels,  how 
soon  can  it  be  brought  to  a  standstill  when  travelling  at  60  miles  an  hour  ? 
(Coefficient  of  friction  =  ̂ .) 

The  maximum  braking  force  is  one-sixth  of  the  weight,  so  the  accelera- 
tion is  -  ̂   X  32-2  ft.  per  sec.  per  sec.     Hence  the  time  needed  to  destroy  a 

88 
speed  of  88  ft.  per  sec.  is  —^  or  16"4  sees.     During  this  time  its  average 

speed  is  30  miles  an  hour,  so  it  cannot  be  pulled  up  in  less  than  an  eighth 
of  a  mile,  even  if  the  rails  are  dry. 

50.  Friction  of  lubricated  bearings.  Frictional  re- 
sistance to  the  sliding  of  one  body  on  another  is  greatly  reduced 

if  a  film  of  oil  is  maintained  between  them.  Under  these 

circumstances,  the  frictional  resistance  does  not  follow  the  same 

law  as  with  dry  surfaces ;  it  increases  with  the  speed  of  rubbing 
and  with  the  area  of  contact,  but  does  not  depend  on  the 

pressure.  But  in  practice,  where  the  pressure  is  large  a  thicker 
oil,  or  even  grease,  is  needed  than  when  the  pressure  is  small, 
and  this  increases  the  resistance ;  for  example,  when  a  ship  is 

launched  the  ways  down  which  it  slides  are  lubricated  with 
a  mixture  of  soft  soap  and  Russian  tallow.  The  commonest 
instance  of  lubrication  of  surfaces  sliding  on  one  another  occurs 

in  bearings,  and  in  the  majority  of  cases  the  lubrication  is  so 
imperfect  that  the  laws  of  friction  between  dry  surfaces  may 
be  assumed  to  be  followed,  except  that  the  coefficient  of  friction 

is  much  smaller,  a  usual  value  being  -02  or  -03  instead  of 
about  -15. 

Take  as  an  example  of  this  a  dynamo  with  a  shaft  whose 

diameter  is  1*5  inches,  running  in  bearings,  and  suppose  that 
each  of  the  bearings  has  to  support  a  pressure  of  1  cwt.  Take 
the  coefficient  of  friction  as  '02.  The  total  frictional  resistance 

to  the  turning  of  the  shaft  in  its  bearing  is  then  -02  x  112  or 
2 2 "4  lbs.  wt.,  exerted  along  the  circumference  of  the  shaft.  If 
the  shaft  turns  through  one  revolution  a  point  on  the  circum- 

ference moves  TT  X  1*5  inches  or      ̂ ^ —  ft.;  so  the  work  done  in 
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each  bearing  against  frictional  resistance  in  one  revolution  is 

22-4  X  '^J-^  ft.-lbs. 

There  may  be  some  difficulty  in  realising  the  meaning  of  "the 
work  done  in  one  revolution  of  the  shaft,"  since  in  all  the 
instances  we  have  discussed  hitherto  the  displacement  has  been 

along  one  straight  line.  But  the  definition  of  work  covers 

displacement  along  any  line,  straight  or  curved.  For  example, 
if  men  are  turning  a  capstan  by  pushing  the  capstan  bars, 

walking  round  the  capstan  as  it  turns,  the  work  they  do  is 
measured  by  the  product  of  the  force  which  they  exert  and  the 

distance  they  have  walked.  In  this  case,  and  in  that  of  the ! 

shaft  turning  in  its  bearings  and  overcoming  frictional  resistance, 

the  displacement  is  always  in  the  direction  of  the  force,  so  the 
work  is  the  product  of  the  two.  A  man  riding  a  bicycle  does 

not  push  the  pedal  exactly  in  the  direction  it  is  moving,  i.e.  at 
right  angles  to  the  crank,  so  the  work  he  does  is  less  than  the 
force  he  exerts  multiplied  by  the  distance  the  pedal  moves, 

but  if  he  uses  his  ankles  properly  it  is  not  much  less  than 
this. 

51.  Use  of  wheels.  Suppose  we  have  to  haul  a  coal 

truck  weighing  10  tons  along  a  level  railway  line  for  half  a  mile. 
If  it  is  mounted  on  iron  runners  the  force  we  must  exert  will 

be  about  ̂   x  1 0  tons  wt.  (taking  the  coefficient  of  friction  as 

one-seventh),  or  3200  lbs.  wt.  This  force  has  to  be  exerted 
for  half  a  mile,  so  the  work  is  3200  x  880  x  3  ft.-lbs.,  or 
8,448,000  ft.  lbs. 

Suppose  that  the  lines  are  greased  for  their  whole  length, 

reducing  the  coefficient  of  friction  to  -03.  Then  the  force  becomes 
672  lbs.  wt.,  and  the  work  1,774,000  ft.-lbs.  This  then  would 
mean  less  work,  but  is  of  course  not  a  method  which  it  would  pay 

to  adopt. 
Suppose  that  the  truck  is  mounted  on  wheels  whose  diameter 

is  3  ft.,  the  axles  of  which  are  5  inches  in  diameter,  and  that 
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these  axles  run  in  lubricated  bearings,  their  coefficient  of  friction 

being:  "03.  We  can  calculate  the  work  done  as  in  the  last 
article,  as  follows.     The  circumference  of  each  wheel  is  Stt  ft.,  so 

in  half  a  mile  it  will  turn  round  —    times. 
OTT 

The  total  pressure  on  the  bearings  is  10  tons,  so  the  frictional 

resistance  to  the  turning  of  the  shafts  is  '03  x  10  x  2240  or 
672  lbs.  wt.,  exerted  along  the  circumference  of  the  axles. 

When  the  axles  turn  through   one  revolution  a  point   on  the 

circumference  moves  tt  x  5  inches  or  — ^  ft.    Hence  the  work  done 1 2 

in  one  revolution  is  672  x  -—  ft.-lbs.      But   in    half   a   mile    the 1 2 
880 

wheels  and  axles  turn   times ;  so  in  that  distance  the  work TT 

done  is  —  X  672  X  ̂  ft.-lbs.,  or  246,400  ft.-lbs. 

Hence  the  work  done  per  half  mile  in  hauling  the  truck  on 
wheels  is  less  than  one-sixth  of  what  it  would  be  with  sliders  on 

greased  rails,  and  less  than  one-thirtieth  of  what  it  would  be 
on  dry  rails.  The  larger  the  wheels  and  the  smaller  the  axles, 
the  less  will  be  the  work. 

Since  the  work  done  in  hauling  the  truck  for  880  yds.,  or 

2640  ft.  along  the  line  is  246,400  ft.-lbs.,  the  force  exerted  by  the 
246  400 

engine  which  hauls  it  must  be        '      -  lbs.  wt.,  or  93-33  lbs.  wt. 

(This  force  is  of  course  much  less  than  the  force  of  friction 

between  the  axle  and  its  bearings,  which  we  saw  was  672  lbs.  wt.) 
The  usual  way  of  expressing  frictional  resistance  to  the  motion  of 

trains  is  to  say  it  is  ''so  many  lbs.  wt.  a  ton";  as  the  truck 
weighs  10  tons,  in  this  case  it  is  9^  lbs.  wt.  a  ton.  When  the 
speed  is  high,  the  resistance  of  the  air  becomes  considerable,  and 
the  frictional  resistance  may  be  16  lbs.  wt.  a  ton. 

For  a  bicycle  or  motor  car  running  at  20  miles  an  hour  on  an  asphalt 
road  the  resistance  is  about  40  lbs.  wt.  per  ton,  and  on  an  ordinary  road 
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about  80  lbs.  wt.  per  ton ;  if  the  surface  is  soft  the  road  resistance  rises  to 
100  lbs.  wt.  per  ton.     But  here  the  frictional  resistance  is  chiefly  in  the 
wind,  the  tyres  and  road  surface,  and  hardly  at  all  in  the  bearings  if  these 
are  ball  bearings.     So  a  12  stone  man  on  a  28  lb.  bicycle  would  have  to 

168  +  28 
overcome  a  frictional  resistance  of  about     ̂ ^^^     x  80  lbs.  wt.  or  7  lbs.  wt. 2240 

if  he  went  at  20  miles  an  hour ;  at  a  moderate  speed  the  resistance  would  be 
only  about  4  lbs.  wt. 

Ex.  12.  The  load  on  each  of  the  back  wheels  of  a  brougham  is  4  cwt. ; 

the  diameter  of  the  axle  is  1|  inches,  and  the  coefficient  of  friction  is  '03. 
Determine  the  work  done  against  friction  in  one  revolution  of  the  wheel. 

Ex.  13.  If  the  diameter  of  the  above  wheel  is  3  ft.,  find  the  work  spent 
on  friction  in  its  bearing  in  1  mile. 

Ex.  14.  From  the  result  of  the  last  example,  find  the  tractive  force  on 
the  back  axle  when  the  brougham  is  on  smooth  level  ground. 

52.    Rate  of  doing  work.    Power  and  Horse  Pow^er. 
In  practice  it  is  important  to  consider  the  rate  at  which  work  is 

done.  By  the  use  of  a  suitable  machine  a  comparatively  feeble 

person  can  exert  a  very  large  force,  and  by  taking  a  long  time 

he  can  do  a  great  deal  of  useful  work  ;  but  if  a  boat  has  to  be 

rowed  up  stream  one  man  may  be  unable  to  work  fast  enough 

to  overcome  the  current  (and  it  would  be  better  for  him  to  cast 

anchor)  while  two  men  may  be  able  to  do  so. 

The  rate  at  which  work  is  done  is  called  Po"wer.  We  can 

state  the  power  of  an  engine  as  the  number  of  foot-poundals 

it  can  do  in  a  second,  or  ergs  in  a  second,  or  foot-pounds  in  a 
minute,  etc. 

Ex.  15.     A  horse  pulling  a  cart  exerts  a  horizontal  pull  of  110  lbs.  wt. 
and  walks  at  a  steady  3  miles  an  hour.     How  much  work  does  it  do  in  a 
minute? 

.    3x1760x3  »    ̂   .     -,      .  XI,     J-  +  I, 
3  miles  an  hour  is   ^7:   feet  in  1  mm. ;  so  the  distance  he  moves 

bO 
in  1  min.  is  264  ft.     Hence  the  work  done  is  110x264  or  29,040  ft.-lbs. 

The  Power  of  the  horse  is  29,040  ft.-lbs.  per  min. 

The  power  of  an  engine  is  usually  expressed  by  comparing  it 

with  that  of  a  horse ;   to  prevent  disappointment  to  the  buyer 

I 
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of  the  engine  an  unusually  powerful  horse  was  originally  taken 

as  the  standard,  one  which  could  work  steadily  at  a  greater  rate 

than  the  one  quoted  in  the  above  example,  and  could  do  33,000 

ft.-lbs.  per  min.  So  a  "  one  horse  power  engine  "  is  one  which 

can  do  33,000  ft.-lbs.  per  min. ;  a  "  50,000  h.  p.  engine  "  is  one 
which  can  do  50,000  x  33,000  ft.-lbs.  per  min.  ;  and  so  on.  An 

average  man  can  do  useful  work  for  a  fairly  long  time  at  the 
rate  of  i  h.  p. 

Ex.  16.  A  50  H.  p.  engine  is  pumping  water  from  the  bottom  of  a  mine 
800  ft.  deep ;  if  it  is  working  for  8  hours,  and  30  h.  p.  is  actually  spent  in 
raising  water,  how  much  will  it  lift  ? 

30  H.  p.  for  1  min.  gives  a  total  of  30x33,000  ft.-lbs.;  if  this  is  con- 
tinued for  8  hours  (or  8  x  60  mins.)  we  get  a  total  of  30  x  33,000  x  8  x  60  or 

475,200,000  ft.-lbs.     To  raise  1  lb.  of  water  needs  an  expenditure  of  1  x  800 

ft.-lbs.     Hence  the  number  of  pounds  of  water  raised  is   '-— ̂  —   or 800 

594,000  lbs.     Since  1  gallon  of  water  weighs  10  lbs.,  59,400  gals,  of  water 
will  be  pumped  up. 

Ex.  17.  A  train  weighs  200  tons,  and  is  running  along  a  level  line  at 
30  miles  an  hour.  The  frictional  resistance  to  be  overcome  by  the  engine  is 
10  lbs.  wt.  per  ton.     Find  the  h.  p.  at  which  the  engine  is  working. 

30  miles  an  hour  is  %^  x  88  ft.  per  sec.  or  2640  ft.  per  min.  The  engine 
is  exerting  a  force  of  200  x  10  lbs.  wt. ;  therefore  in  1  minute  it  does 

200x10x2640  or  5,280,000  ft.-lbs.  of  work.     Hence  the  necessary  horse- 
.    5,280,000 

P^^'^  ̂^ -33:000- ^''^^^•^- 

Ex.  18.  The  train  in  Ex.  17  has  to  be  hauled  at  the  same  speed  up  an 
incline  of  1  in  100 ;  what  will  now  be  the  h.  p.  of  the  engine  ? 

In   addition    to   overcoming    the   frictional   resistances   to   motion,   the 
engine  has  now  to  lift  200  tons,  or  200  x  2240  lbs.,  through  a  certain  vertical 

height ;  in  1  min.  it  moves  2460  ft.  along  the  rails,  so  it  rises  j-^tt  x  2640  ft. 
or  26-4  ft.     The  work  done  in  1  min.  on  this  account  is  therefore  200  x  2240 

oc  ̂    *i   lu         1,  xu  J  J    r       .!.•     •     200x2240x26-4 X  26-4  ft.-lbs, ;    hence   the   h.  p.   needed   for   this  is  —      or qd,UUO 

358*3  H.  p.     So  the  total  output  of  the  engine  is  160 -F  358-3  or  518-3  h.  p. 
The  importance  of  keeping  the  hne  level  will  be  seen  from  this  example. 

Ex.  19.  A  train  weighing  180  tons  runs  along  a  level  line  at  50  miles 
an  hour ;  the  frictional  resistance  to  be  overcome  is  20  lbs.  wt.  per  ton ;  find 
the  H.^p.  required. 



92  Chapter  V 

Ex.  20.  Find  the  h,  p.  required  to  haul  the  train  of  Ex.  19  at  the  same 
speed  up  an  incline  of  1  in  180. 

Ex.  21.     A  man  riding  a  bicycle  along  a  level  road  at  9  miles  an  hour 

is  exerting  one-tenth  of  a  horse  power ;  find  the  resistance  he  is  overcoming. 
9  miles  an  hour  is  792  ft.  per  min.;  in  1  min.  he  does  3300  ft.-lbs.; 

I.  XI     ..         1  .    .    3300 
hence  the  force  he  exerts  is  --^  or  4-17  lbs.  wt. 

792 

Ex.  22.  A  12  stone  man  climbing  a  mountain  rises  1500  ft.  in  an  hour; 
find  the  rate  at  which  he  is  working. 

He  lifts  12  X  14,  or  168  lbs.  through  ,  or  25  ft.  in  a  minute.     So  in 
4200 

1  min.  he  does  168x25,  or  4200  ft.-lbs.;  hence  his  h.  p.  is  5^-7^^  or  -127 

(about  I)  H.  p. 

Ex.  23.  A  12  stone  man  runs  up  stairs,  and  gets  up  to  the  top  of  a 
60  ft.  building  in  a  minute ;  find  his  rate  of  working. 

Ex.  24.  A  man  and  bicycle  together  weigh  180  lbs.;  when  "coasting" 
down  a  hill  of  1  in  36,  they  keep  up  a  steady  pace  of  10  miles  an  hour. 
Find  the  power  required  to  keep  up  10  miles  an  hour  on  the  level. 

The  component  of  their  weight  down  the  slope  is  3^x180  lbs.  wt.,  or 
5  lbs.  wt.     Hence  the  frictional  resistance  to  motion  at  10  miles  an  hour  is 

5  lbs.  wt.     10  miles  an  hour  is  880  ft.  per  min.,  so  the  h.  p.  required  is 
5x880 

38,000  ' 

*Ex.  26.  If  the  bicycle  in  Ex.  24  is  geared  to  64  inches,  and  the  length 
of  the  crank  is  7  inches,  find  the  average  pressure  which  the  rider  must 
exert  on  the  pedals. 

The  meaning  of  "the  bicycle  is  geared  to  64  inches"  is  that  one  revolu- 
tion of  the  crank  makes  the  bicycle  move  forward  a  distance  equal  to  the 

circumference  of  a  wheel  whose  diameter  is  64  inches,  i.e.  tt  x  64  inches  or 

16*75  ft.  The  work  the  rider  must  do  in  this  distance  is  5  x  16*75  ft.-lbs., 
since  the  resistance  to  the  motion  of  the  bicycle  is  5  lbs.  wt.  Let  F  lbs.  wt. 
denote  the  average  pressure  on  the  pedal  at  right  angles  to  the  crank  (in 
practice  of  course  the  pressure  varies  to  some  extent).  In  one  revolution  of 

the  crank  the  pedal  moves  through  a  distance  of  27r  x  7  inches  or  3-66  ft. ; 
so  the  work  done  in  one  revolution  is  jF x  3*66  ft.-lbs.     Hence 

5  X  16-75  =:i^x  3-66, 

and  i^=22-0  lbs.  wt. 
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53.  Transmission  of  Power.  In  factories  and  houses 

we  are  provided  with  power  in  various  forms ;  water-power, 
steam-power,  electric-power,  etc.  This  is  made  available  for  use 
by  some  form  of  motor,  water  motor,  steam  engine,  electric  motor. 
These  have  a  shaft  which  revolves  against  an  opposing  force,  thus 
driving  any  machine,  lifting  a  weight  or  however  else  we  wish 

to  employ  the  power.  There  are  several  ways  in  which  we  can 
transmit  the  power  from  the  motor,  some  of  which  we  will  now 

consider.  If  we  want  to  imagine  what  goes  on  when  power  is 
thus  transmitted,  the  simplest  of  these  methods  is  the  chain 

drive,  used  in  bicycles  and  some  motor  cars.  Here  an  endless 
chain  passes  round  pulleys,  one  on  the  shaft  of  the  motor  and 

the  other  on  the  shaft  of  the  machine  to  be  driven ;  one  part  of 

the  chain  between  these  pulleys  is  under  tension  (the  "tight" 
side),  and  the  other  part,  or  side,  is  slack.  Teeth  on  the  two 

pulleys  fit  into  the  links  of  the  chain  to  prevent  its  slipping. 
If  we  know  the  tension  in  the  tight  side,  in  poundals,  and  the 
speed  at  which  the  chain  is  running,  in  ft.  per  sec,  we  can 

immediately  calculate  the  work  in  ft. -poundals  transmitted  in  a 
second  (by  multiplying  these  two  numbers  together),  and  if  we 
wish  can  express  it  in  horse  power. 

Ex.  26.     The  tension  in  the  chain  of  a  bicycle  is  10  lbs.  wt.,  and  it  runs 
at  8  ft.  per  sec.  ;  what  is  the.H.  p.  transmitted? 

The  work  done  by  the  chain  in  1  sec.  is  10x8  ft. -lbs. ;  hence  in  1  min. 

it  does  80  x  60  or  4800  ft.-lbs.     Now  1  ft.-lb.  per  min.  is  h.  p.,  so  the 00,000 

,    .    ̂   •.     4800 chain  transmits  -  h.  p. 
oo,uUO 

It  is  more  usual  to  use  a  leather  or  canvas  belt  instead  of  a 

chain;  teeth  on  the  pulleys  cannot  now  be  used  to  prevent 
slipping,  and  the  friction  between  belt  and  pulley  must  be  used 
instead.  If  one  side  of  the  belt  is  quite  slack,  as  was  the  case 

with  the  chain,  there  will  not  be  suflScient  pressure  between  the 
surfaces  of  the  belt  and  pulley  to  produce  the  necessary  friction, 
so  the  belt  must  be  shortened  and  so  tightened  up  until  it  does 
not  slip.    But  as  in  the  case  of  the  chain  there  must  be  a  greater 
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tension  in  the  "  tight "  side  than  in  the  "  slack  "  side  of  the  belt, 
or  it  will  not  transmit  any  power ;  if  in  Fig.  38  A  is  the  pulley 

of  the  motor  and  B  the  pulley  of  the  machine  it  is  driving  and 
1\,  1\  are  the  tensions,  in  lb.  wts.,  of  the  two  sides  of  the  belt, 

the  retarding  force  along  the  circumference  of  A  which  the 

motor  is  overcoming  is  1\  -  T<^  lbs.  wt.  (for  T^  is  helping  A  to 
turn  and  T^  is  resisting  it).  The  work  done  by  the  motor  in  a 

second  will  as  before  be  the  product  of  this  force  {T^  -  T^  lbs.  wt.) 

and  the  distance  run  by  the  belt  in  a  second.      We  can  easily 

Fig.  38. 

determine  the  latter,  by  counting  the  number  of  revolutions  of  A 

in  a  known  time  and  measuring  its  circumference,  but  it  is  not 
so  simple  a  matter  to  determine  the  difference  of  tensions  in  the 

belt.     A  method  of  doing  this  will  be  explained  later. 
In  order  that  the  belt  should  not  slip,  it  may  be  taken  as  a 

rough  working  rule  that  the  tension  in  the  tight  side  of  the  belt 

must  not  be  greater  than  2J  times  the  tension  in  the  slack  side. 
If  then  we  know  the  speed  of  the  belt  and  the  power  it  has  to 

transmit  we  can  calculate  the  tensions  required  in  the  tight  and 
slack  sides  to  avoid  slipping. 

Ex.  27.  The  speed  of  a  belt  is  2200  ft.  per  min.,  and  it  transmits 
50  H.  p.     Find  the  tension  of  each  side  of  the  belt. 

The  work  done  by  the  belt  in  1  min.   is  50x33,000  ft.-lbs.;   in  that 
time  the  belt  travels   2200  ft.,  so  the  difference  of  the  tensions  must  be 

33  000 
50  X  -KKKK  lbs.  wt.,  or  750  lbs.  wt.     Now  the  larger  is  2^  times  the  smaller 

tension,  so  the  difference  is  \\  times  the  smaller  tension;  hence  the  smaller 
tension  is  f  x  750,  or  500  lbs.  wt.,  and  the  larger  tension  is  1260  lbs.  wt. 
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Ex.  28.  The  driving  wheel  of  a  motor  cycle  has  a  diameter  of  28  ins.; 
the  belt  pulley  on  the  driving  wheel  has  a  diameter  of  20  inches ;  2^  h.  p. 
has  to  be  transmitted  when  the  bicycle  is  travelling  at  15  miles  an  hour; 
find  the  tensions  in  the  two  sides  of  the  belt. 

15  miles  an  hour  is  440  yards  a  minute,  or  1320  ft.  a  minute. 
The  circumference  of  the  driving  wheel  is  tt  x  f|  ft.,  so  while  the  bicycle 

1320  X 12 
moves  1320  ft.  it  must  turn  round   — -—  times.     Hence  in  a  minute  the 

TT  X  28 

1320  X 12 
belt  pulley  turns  round     -3—  times.     The   circumference   of  the  belt TT  X  28 

pulley  is  TTxI^I  ft.,  so  a  point  on  its  circumference  (and  therefore  the  belt) 
•     -.      •      .1  ^.         20      1320x12.^  ^^^^.^ 

moves  in  1  mm.  through  ttx—tX    — —  ft.,  or  943  it. 12  TT  X  28 

Now  2^  H.  p.  equals  2^  x  33,000  ft. -lbs.  in  1  min.     This  must  therefore 
be  equal  to  943  multiplied  by  the  difference  of  tension  in  lbs,  wt.     So  the 

difference  of  tension  is  -z: — '^     lbs.  wt.  or  87'5  lbs.  wt.     As  in  Ex.  1,  this 2  x  943 

difference  is  1^  times  the  tension  in  the  slack  side,   so  the  tensions  are 
145*8  and  68-3  lbs.  wt. 

54.  Measurement  of  the  Horse  Power  of  a  motor 

by  a  rope  brake.  The  "h.  p.  of  a  motor"  is  not  a  detinite 
quantity  like  its  weight ;  it  depends  on  the  work  it  is  set  to  do, 
the  speed  at  which  it  runs,  and  the  amount  of  explosive  gas, 
electric  current,  water,  etc.  which  is  supplied  to  it.  Suppose 

that  we  have  to  determine  the  output  of  a  motor  when  these 
conditions  are  known,  for  example  suppose  it  is  a  petrol  motor 

driving  by  means  of  a  belt  a  dynamo  which  is  supplying  current 

at  the  proper  voltage  to  a  definite  number  of  lamps.  If  we 

switch  on  more  lamps,  the  "  load  "  on  the  dynamo  is  increased, 
the  motor  has  to  do  more  work  and  will  probably  slow  down 

unless  the  "  throttle "  is  opened  somewhat  so  that  more  petrol 
passes  into  it.  If,  instead  of  switching  on  more  lamps,  we  hold 
the  tight  side  of  the  belt,  so  that  the  belt  cannot  move  and  the 

driving  pulley  of  the  motor  can  only  turn  by  slipping,  the  motor 
will  slow  down  as  before,  since  the  retarding  force  on  it  is  in- 

creased. Leave  the  "  throttle  "  unchanged,  but  gradually  reduce 
the  tension  in  the  slack  side  of  the  belt,  thus  reducing  the  pressure 
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between  the  belt  and  pulley,  and  so  reducing  the  friction,  until 

the  motor  picks  up  again  to  the  same  speed  as  before.  Then,  so 
far  as  the  motor  is  concerned,  it  is  running  under  exactly  the 
same  conditions  as  when  it  was  driving  the  dynamo,  so  it  must 
be  doing  work  at  the  same  rate.  But  now  the  motor  is  doing 

work  against  the  retarding  force  of  friction  instead  of  against 
the  resistance  of  the  dynamo ;  the  belt  is  standing  still  and  we 

can  now  easily  measure  the  tensions  in  each  side.  These  tensions 

will  not  be  the  same  as  when  the  motor  was  driving  the  dynamo, 

but  since  the  motor  is  running  at  the  same  pace  and  doing  the 

same  work,  the  retarding  force  must  be  the  same  as  before,  i.e.  the 
difference  of  the  tensions  must  be  the  same  as  before.  (Each  must 

therefore  have  been  reduced  by  the  same  amount  when  the  belt 

was  slackened  to  let  the  motor  pick  up  its  original  speed.) 
A  convenient  way  of  arranging  the  belt  in  order  to  measure 

this  difference  of  the  tensions  is 

shown  in  Fig.  39.  Here  the  belt 
is  not  an  endless  one;  one  end 

carries  a  pile  of  weights,  the  other 

is  attached  to  a  spring  balance 
whose  other  end  is  fixed.  The 

weights  are  adjusted  until  the 
motor  runs  at  its  original  speed 

with  the  original  supply  of  petrol 

(or  current,  etc.,  according  to  the 
kind  of  motor  it  is).  Then  the 
difference  of  the  tensions  in  the 

tight  and  slack  sides  can  be  found 

by  subtracting  the  reading  of  the 

spring  balance  from  the  value  of 
the  weights ;  when  the  number  of 
revolutions  per  min.  of  the  motor 

^^*     ■  '  has  been  observed  by  a  revolution 
counter  and  the  circumference  of  the  pulley  has  been  measured,  we 

can  calculate  the  horse  power  at  which  the  motor  was  working. 

I 
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This  is  called  a  Rope  Brake ;  as  it  absorbs  the  power  of  the 

motor  it  is  called  an  Absorption  Dynamometer;  and  the  result  of 
the  test  made  with  it  is  called  the  Brake  Horse  Power  of  the 

engine. 

Ex.  29.  The  motor  makes  1200  revs,  per  rain. ;  the  diameter  of  the 

pulley  is  18  inches ;  the  reading  of  the  spring  balance  is  19*5  lbs.  wt.  and 
the  weights  on  the  other  side  amount  to  78  lbs.     What  is  the  h.  p.  ? 

The  circumference  of  the  pulley  is  tt  x  1-5  ft.,  so  in  1  minute  the  dis- 
tance which  a  point  on  the  circumference  moves  against  the  resistance  is 

1200  X  TT  X  1-5  ft.  The  frictional  resistance  is  the  difference  of  the  tensions, 
or   78-19-5,    or   58'5  lbs.  wt.      Hence    the   work    done    in    1    minute    is 

10AA  1   c        Ko  r   *^    lu  ^1  •      1200  X  TT  X  1-5  X  58-5 1200  X  TT  X  1-5  X  58-5  ft. -lbs.,   so  the  ii.  p.  is    h.  p.   or 
oo,UuU 

10-02  H.  p. 

Ex.  30.  The  tensions  on  the  two  sides  of  a  rope  brake  are  8  and  2  lbs. 
wt. ;  the  diameter  of  the  pulley  is  1  ft.  and  the  speed  is  100  revs,  per  min. ; 
calculate  the  h.  p. 

55.  Work  represented  by  Area.  Suppose  that  a  body 

is  acted  on  by  a  constant  force,  and  moves  in  the  direction  of  that 
force.  If  we  draw  a  diagram  to  represent  the  force  at  every 

point  of  its  path,  taking  abscissae  to  represent  the  displacement 
of  the  body,  and  ordinates  to  represent  the  force,  then  this 

"force-displacement  curve"  is  a 
straight  line  {AB  in  Fig.  40);  o 

at  any  point  M  the  force  on  the 

body  is  represented  by  FM.  Now 
the  work  done  on  the  body  while 
it  moves  from  0  to  M  is  the 

product  of  the  force  on  it  and 
the  distance  it  has  moved ;  the 

area  OP  is  the  product  of  the  length  PM  and  the  length  OM. 

Hence  we  may  say  that  the  area  OP  represents  the  work  done  on 
the  body  by  the  force  represented  by  PM  when  it  moves  a  distance 

represented  by  OM.  By  this  we  merely  mean  that  the  area  OP 
contains  as  many  units  of  area  as  the  work  done  contains  units 
A.  7 

M 

Fig.  40. 
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of  work,  and  we  must  be  careful  to  take  the  correct  unit  of  area. 

This  is  decifled  when  we  have  decided  on  the  scale  to  represent 

forces  and  distances.  For  example,  if  we  take  an  inch  to  repre- 
sent 1  lb.  wt.,  and  an  inch  to  rep  resent  ̂ 1  ft.,  then  a  square  inch 

is  our  unit  of  area,  and  a  square  inch  represents  1  ft.-lb.  But  if 
we  take  2  ins,  to  represent  1  lb.  wt.,  and  3  ins.  to  represent  1  ft., 

then  our  "unit  of  area"  in  the  above  statement  is  6  sq.  ins.,  repre- 
senting 1  ft.-lb. ;  or  we  may  put  this  latter  case  in  another  way, 

and  take  1  inch  to  represent  J  lb.  wt.,  and  1  inch  to  represent 

i  ft.,  then  1  sq.  in.  will  represent  J  x  i  or  J  ft.-lb.  This  is  a 

more  usual  way  of  stating  the  "scale"  of  a  diagram.  If  we 
know  this  scale,  i.e.  how  many  ft. -lbs.,  ft.-poundals  or  ergs  are 
represented  by  1  sq.  in.  or  1  sq.  cm.  on  the  diagram,  we  can  at 
once  calculate  the  work  done  when  we  have  measured  the  area ; 
and  we  can  calculate  what  the  scale  is  when  we  know  what  scales 

are  used  for  force  and  distance,  as  was  done  above. 

Ex.  31.  The  scale  of  a  force  displacement  diagram  is  1  in.  to  100  lbs. 
wt.,  and  1  in.  to  20  ft. ;  what  is  the  area-scale  for  the  work? 

Ex.  32.  On  the  above  diagram,  what  work  is  represented  by  an  area  of 
2-97  sq.  ins.  ? 

Ex.  33.  A  force  of  -7  lb.  wt.  acts  on  a  body  for  a  distance  of  16  ins. 
Draw  the  force-displacement  curve  to  some  convenient  scale  of  inches  to 
poundals  and  feet ;  determine  the  value  of  a  sq.  in.  in  ft.-poundals,  and 
hence  calculate  the  work  done. 

56.  This  introduction  of  units  of  area  and  scales  may  seem 
a  roundabout  business,  and  as  a  matter  of  fact  it  is  a  useless 

complication  in  dealing  with  simple  areas  like  that  of  a  rectangle. 
In  those  cases  it  is  much  more  straightforward  and  simple  to  find 

from  the  diagram,  or  from  the  conditions  of  the  problem,  the 
values  of  the  acting  force  and  the  displacement  and  multiply 
these  together  to  find  the  work  done.  But  there  are  many 

cases,  such  as  we  shall  consider  presently,  where  we  cannot  cal- 
culate the  work  in  this  simple  way,  but  have  actually  to  measure 

an  area  on  the  diagram  itself  by  a  planimeter,  or  in  some  other 



Work  and  Power 99 

practical  way,  and  deduce  from  our  result  the  value  of  the  work 

done ;  in  that  case  we  require  to  know  how  much  work  is  repre- 
sented by  1  sq.  in.  or  other  unit  of  area  of  the  diagram. 

57.  Work  done  by  a  variable  force.  Suppose  that  a 

body  is  acted  on  by  a  force  which  changes  in  magnitude  during 
the  motion,  and  that  we  know  the  value  of  the  force  at  each 

point  of  the  body's  path  (not  at  each  instant  of  the  motion). 
For  example,  we  know  that  the  force  exerted  by  a  spiral  spring 

is  proportional  to  the  amount  it  is  extended  beyond  its  normal 
unstretched  length  ;  so  if  a  spring  has  one  end  fixed  and  the 
other  attached  to  a  body  which  moves  so  as  to  extend  the  spring, 

the  force  on  the  body  will  be  proportional  to  the  distance  it  has 
moved  from  the  point  at  which  the  spring  first  acted  on  it.  The 

force-displacement  curve  is  shown  as  OP  in  Fig.  41. 

.0  .2 

1  inch  to  -4  ft.,         1  inch  to  4  poundals, 

Fig.  41. 

•6  ft. 

1  sq.  in.  to  1-6  ft.-poundals. 

Again,  if  a  quantity  of  gas,  at  a  pressure  above  that  of  the 
atmosphere,  is  contained  in  a  cylinder  fitted  with  a  piston,  and 
the  piston  is  allowed  to  move  outward,  doing  work  as  it  goes,  the 

pressure  of  the  gas  will  decrease  as  the  volume  it  occupies  increases. 

The  force  exerted  by  the  gas  on  the  piston  depends  on  the  position 

of  the  piston.  Fig.  42  shows  the  force-displacement  curve  for 

steam  expanding  in  the  cylinder  of  a  steam-engine,  starting  with 

7—2 
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1  cub.  ft.  of  steam  in  the  cylinder  at  a  pressure  of  100  lbs.  per 

sq.  in.  above  that  of  the  air,  and  assuming  that  the  area  of  the 

piston  is  1  sq.  ft. 

In  any  such  case  we  can  compute  the  work  done  during  any 
displacement  from  the  area  bounded  by  the  ordinates  through 

the  points  representing  the  initial  and  final  positions,  the  curve 
and  the  horizontal  axis. 

For,  let  ifj,  M2  represent  the  initial  and  final  positions,  and 

PiJ/j,  P2M2  the  ordinates.     Subdivide  M^IL^  into  a  large  number 

0        Ml  M 

1  in.  to  -74  ft., 1  in.  to  7400  lbs.  wt. 

Fig.  42. 

Travel  uf^  Piston 

M^         2~   ̂'■ 

1  sq.  in.  to  5476  ft. -lbs. 

of  equal  parts,  and  call  mm!  one  of  them,  qm  and  q'm!  being  the 
ordinates.  Then  qm,  q'm'  represent  the  forces  at  the  positions 
represented  by  m  and  m! .  For  example,  in  Fig.  42  M^M.^  is 

divided  into  30  equal  parts,  so  that  M^M',  mm'  represent  dis- 
placements of  -^^  ft.  each,  and  the  force  at  m  is  6200  lbs.  wt. 

and  at  m'  it  is  5960  lbs.  wt.  Draw  the  parallel  lines  as  in  the 

figure.     If  during  the  step  mm'  the  force  had  a  constant  value 



Work  and  Power  101 

represented  by  qm  (or  6200  lbs.  wt.  in  this  example),  the  work 
done  during  this  small  displacement  would  be  represented  by  the 

area  qrm'm  (i.e.  by  G200  x  -05  ft.-lbs.).  If  during  the  step  the 
force  had  remained  constant,  with  a  value  represented  by  q'm 
(or  5960  lbs.  wt.  in  this  example),  the  work  done  during  the  step 

would  be  represented  by  the  area  sq'm'm  (or  5960  x  -05  ft.-lbs.).  As 
a  matter  of  fact,  the  force  changes  gradually  from  one  value  to 
the  other,  so  the  work  done  must  be  intermediate  between  these 

two  values.  Hence  if  we  take  the  area  qqm'm  as  representing 
the  work  done  {qq  being  the  arc  of  the  curve),  our  error  cannot 

be  greater  than  the  work  represented  by  the  little  rectangle  qrq's 
(or  240  X '05  ft.-lbs.).  This  rectangle  is  equal  to  ntt'n'  (shown 
shaded).  Considering  all  the  steps  from  M^  to  J/g,  the  work 
done  can  be  represented  by  the  area  bounded  by  the  curve  PiP^, 
the  ordinates  PiMy  and  P^M.^,  and  the  straight  line  M^M,,^  the 

error  in  doing  so  being  less  than  the  work  represented  by  the 

area  of  the  rectangle  P^N'  (shown  shaded);  for  this  is  the  sum 

of  all  the  little  rectangles  like  ntt'n.  (In  our  example,  PiM^ 
represents  10,760  lbs.  wt.  and  P^M^^  represents  3230  lbs.  wt.,  so 

the  area  P^N'  represents  7530  x  -05  ft.-lbs.) 

Now  the  area  P^N^',  and  therefore  the  amount  of  the  error, 
depends  on  the  breadth  of  the  strips  ram,  etc.  which  we  can 
make  of  any  size  we  please ;  by  increasing  their  number  and  so 
reducing  their  breadth  we  can  reduce  the  possible  error  to  as 

small  a  value  as  we  please.  Hence  we  may  assert  that  to  any 
required  degree  of  accuracy  the  area  P^P^M^M^  represents  the 
work  done  in  the  displacement  J/j  to  M.^,. 

The  value  in  sq.  ins.  of  the  area  can  be  determined  in  any  of 

the  many  practical  ways  available ;  by  counting  squares,  by 

Simpson's  rule,  by  measuring  10  ordinates  and  taking  the  mean, 
etc.  ;  then  from  a  knowledge  of  the  scale  we  can  calculate 

directly  the  work  done  during  the  displacement  in  ft.-lbs.,  etc. 

For  example,  in  Fig.  42  the  area  P^P^M^M^  is  1*603  sq.  ins., 
so  the  work  done  in  the  displacement  from  M^  to  M^  is  8780 
ft.-lbs. 
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Ex.  34.     The  following  are  some  of  the  corresponding  values  of  force 
(in  lbs.  wt.)  and  travel  (in  ft.)  of  piston  from  which  Fig.  42  was  drawn : 

Travel 0 

•19 

•67 

• 

1-33 1-92 

Force  ' 
14400 11520 

7200 
4320 2880 

Plot  the  curve  on  a  scale  of  1  in.  to  "25  ft.  and  1  in.  to  2500  lbs.  wt. ; 
determine  the  area  in  sq.  ins.  under  the  curve  for  travel  of  piston  from  '5 
to  1-5  ft.,  and  deduce  the  work  done  in  that  part  of  the  stroke. 

Ex.  35.  Determine  the  area  under  the  force-displacement  curve  in 

Fig.  41,  for  an  extension  of  the  spring  from  0  to  -5  ft.,  and  deduce  the  work 
done,  in  ft.-poundals. 

Ex.  36.  Prove  that  the  work  done  in  extending  a  spiral  spring  for  any 
distance  is  the  same  as  if  there  were  a  constant  force  acting  through  the 
same  distance  and  equal  to  half  the  sum  of  the  initial  and  final  tensions  of 
the  spring. 

58.  Indicator  Diagrams.  In  an  ordinary  steam  engine, 

the  piston  starts  at  the  end  of  the  cyhnder  and  steam  at  high 

pressure  is  admitted  from  the  boiler  into  the  cyhnder  ;  this  exerts 
a  constant  pressure  on  the  piston.  After  the  piston  has  moved 

for  a  part  of  its  stroke  under  the  action  of  this  constant  pressure, 

the  supply  of  steam  from  the  boiler  is  cut  off;  as  the  piston  moves 
onward  for  the  remainder  of  its  stroke,  the  steam  in  the  cylinder 

expands,  exerting  on  the  piston  a 
continually  decreasing  pressure  as 
described  in  Article  57.  Hence 

the  force-displacement  curve  will 
be  as  shown  in  Fig.  43,  where 

OP  represents  the  constant  pres- 
sure in  the  first  part  of  the  stroke 

(from  OtoA),  and  QE  is  the  expan- 
sion curve  described  in  Article  57, 

the  pressure  decreasing  until  the 

piston  has  reached  the  point  at  the  end  of  its  stroke  represented 
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by  B.  The  steam  is  then  allowed  to  flow  out  into  the  exhaust, 

and,  of  course,  does  no  further  work  on  the  piston.  Then  the 

work  done  by  the  steam  during  the  stroke  will  be  represented  by 
the  area  PQRBO,  and  it  can  be  calculated  when  the  scale  of  the 

diagram  is  known.  Such  a  diagram  is  called  an  Indicator 

Diagram.  It  is  a  matter  of  every-day  practice  in  testing 
engines  to  obtain  these  diagrams,  for  not  only  do  they  enable 
us  to  calculate  how  much  work  the  steam  is  doing,  but  by  their 

difference  in  shape  from  the  theoretically  perfect  diagram  of 

Fig.  43  they  indicate  any  faults  there  may  be  in  the  arrange- 
ments for  admitting  and  exhausting  the  steam,  etc.  By  means 

of  a  simple  piece  of  apparatus  the  engine  is  made  to  draw  its  own 
indicator  diagram  to  a  known  scale ;  a  piece  of  paper  is  made  to 

move  with  the  piston,  say  from  right  to  left,  like  the  paper 
attached  to  the  trolley  in  experiments  described  above,  and  a 
pencil  moves  up  or  down  the  paper,  but  not  to  right  or  left. 
This  pencil  is  connected  to  the  piston  of  a  little  separate  cylinder 
which  is  connected  to  the  main  cylinder  and  so  contains  air  or 

steam  at  the  same  pressure;  the  motion  of  the  little  piston  is 

opposed  by  a  strong  spring,  so  the  height  of  the  pencil  above 
a  fixed  line  OB  on  the  paper  shows  the  pressure  of  the  steam  in 
the  piston  of  the  main  cylinder.  Hence  as  the  paper  moves  from 

right  to  left  the  pencil  traces  out  the  line  PQR,  remaining  at  the 
same  height  above  OB  while  the  steam  pressure  is  constant,  but 
dropping  back  towards  OB  as  the  pressure  falls,  and  tracing  the 
line  RB  when  the  pressure  of  the  steam  suddenly  drops  to  that 

of  the  air,  when  the  steam  is  exhausted.  During  the  backward 
stroke  the  cylinder  is  still  connected  to  the  exhaust,  so  the  pencil 

traces  the  line  BO  as  the  paper  moves  from  left  to  right ;  when 
steam  is  again  admitted  for  the  next  stroke  the  pencil  jumps  up 
to  P  again,  and  the  cycle  is  repeated. 

59.     Average  value  of  a  variable  quantity.     If  a 
quantity  varies,  there  are  usually  several  methods  of  arriving 

at  its  "average"  values,  each  leading  to  a  different  value.     For 
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instance,  in  an  hour's  motor  drive  in  a  hilly  country,  the  speed 
might  be  observed  at  the  end  of  each  minute,  or  each  mile,  and 

the  arithmetic  mean  of  either  of  these  sets  of  values  may  be  taken 

as  the  average ;  or  again,  the  total  distance  divided  by  the  total 

time  may  be  taken.  The  three  meth<5ds  will  in  general  give 
different  results;    the  last  is  the  one  commonly  adopted. 

Again,  if  the  force  on  a  body  varies,  and  its  value  is  known 

to  depend  on  the  position  of  the  body,  we  take  as  the  definition 

of  the  average  force,  "  that  constant  force  which,  acting  on  the  body 

during  the  displacement,  does  the  same  work  07i  it."  For  instance, 
in  the  case  given  in  Art.  57,  where  the  force  does  8780  ft. -lbs. 

in  a  displacement  of  1-5  ft.,  the  average  force  is  5851  lbs.  wt. ; 

for  that  constant  force,  acting  through  1-5  ft.,  does  8780  ft. -lbs. 
of  work.  It  should  be  noted  that  this  average  force  is  not  the 
arithmetic  mean  of  the  forces  at  the  beginning  and  end  of  the 

displacement,  for  these  are  10,760  and  3230  lbs.  wt. 
If,  however,  as  in  the  case  of  the  spiral  spring,  the  force  is 

directly  proportional  to  the  displacement,  then  the  average  force 
is  the  arithmetic  mean  of  the  initial  and  final  forces  (see  Ex.  36, 
above). 

In  order  to  find  the  average  force  in  other  cases,  we  must 

draw  the  force-displacement  curve,  determine  the  area  under 
it  for  the  given  displacement  (i.e.  the  area  bounded  by  the 

curve,  the  ordinates  through  the  points  representing  the  initial 

and  final  positions,  and  the  axis  of  displacement)  and  draw  the 

equivalent  rectangle  on  the  same  base ;  then  the  height  of  this 

rectangle  represents  accurately  the  "  average  force." 

A  good  approximation  to  this  "  average  force "  is  got  by 
dividing  the  displacement  into  10  equal  parts,  drawing  the 

ordinates  to  the  force-displacement  curve  at  the  mid-points  of 
these  parts,  and  taking  their  arithmetic  mean  as  representing 
the  average  force.  This  is  one  of  the  practical  methods  of 

finding  roughly  the  area  under  a  curve,  and  is  commonly  adopted 
in  the  case  of  indicator  diagrams.  The  value  found  in  this  way 

from  an  indicator  diagram  is  usually  called  the  "  mean  effective 
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pressure"  of  the  steam,  and  is  the  constant  pressure  on  the  piston 
throughout  the  stroke  which  would  do  the  same  amount  of  work 

as  is  actually  done  by  the  varying  pressures. 

60.     Indicated  Horse  Power.    When  the  mean  effective 

pressure  of  the  steam  in  the  cylinder  of  a  steam  engine  has  been 

determined  from  an  indicator  diagram  as  described  in  the  last 

Article,  it  is  easy  to  deduce  the  rate  at  which  the  steam  is  doing 

work.     Suppose  that  this  mean  effective  pressure  is  P  lbs.  wt.  per 

sq.  in.,  the  length  of  a  stroke  is  L  ft.,  the  area  of  the  piston  is 

A  sq.  in.,  and  the  number  of  working  strokes  per  min.  is  iV^,  then 
the  average  force  on  the  piston  is  P  x  ̂   lbs.  wt.,  the  work  done 

in  a   stroke   is    FLA   ft. -lbs.,   the    work    done    in  a   minute  is 
PLAN 

PLAN  ft. -lbs.,  and  the  horse  power  is  therefore  qq  aT^a  •     ̂ wing 

to  friction,  etc.,  this  is  more  than  the  horse  power  available  for 

practical  use,  and  it  is  called  "indicated  horse  power"  or  i.H. p. 

to  distinguish  it  from  "  brake  horse  power "  or  b.  h.  p.  (see 
Art.   54). 

Ex.  37.  A  single  cylinder  single-acting  steam  engine  runs  at  150  revs, 
per  min.  and  so  makes  150  working  strokes  a  minute.  The  piston  is  12  ins. 
in  diameter,  and  the  stroke  is  15  ins.  ;  the  mean  effective  pressure  of  the 
steam  is  50  lbs.  per  sq.  in.     What  is  the  i.h.  p.  ? 

Miscellaneous  Exercises. 

Ex.  1.  A  man  raises  2^  tons  through  9  ins.  in  2  minutes  by  applying  a 

constant  force  of  44-4  lbs.  wt.  at  right  angles  to  the  "tommy-bar"  of  a 
screw-jack  at  a  point  2i  ft.  from  the  centre  of  the  jack.  The  pitch  of  the 
screw  is  |  inch.  Calculate  the  number  of  turns  of  the  jack  required,  heuce 
the  displacement  of  the  point  of  application  of  the  force,  and  hence  the 
power  (in  h.  p.)  at  which  the  man  is  working.  Calculate  also  the  rate  at 
which  work  is  being  done  against  gravity. 

Ex.  2.  The  tensions  in  the  two  sides  of  a  belt  driving  a  pulley  are 
180  lbs.  wt.  and  100  lbs.  wt.,  and  the  pulley,  whose  diameter  is  2  ft.,  runs 
at  120  revs,  per  rain.     Find  the  speed  of  the  belt  and  the  h.  p.  transmitted. 
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Ex.  3.  A  flat  leather  belt  transmits  power  from  one  pulley  to  another 
of  equal  size;  we  want  to  have  a  difference  of  90  lbs.  wt.  in  the  tensions  of 
the  two  parts  of  the  belt.     What  tension  will  be  necessary  in  the  slack  part  ? 

Ex.  4.  An  engine  delivers  100  h.  p.  through  a  belt  on  its  fly-wheel 

(diameter  6  ft.)  running  at  80  revs,  per  min.'-  Calculate  the  speed  of  the 
belt ;  and  assuming  that  to  prevent  slip  the  tension  in  the  driving  side  of 
the  belt  must  not  be  more  than  twice  that  in  the  slack  side,  flnd  what  the 
latter  must  be. 

Ex.  5.  A  12  stone  man  carries  a  load  of  32  lbs.  up  a  hill  250  ft.  high  in 

5  minutes ;  at  what  horse-power  does  he  work  ? 

Ex.  6.  A  motor  car  weighing  2  tons  runs  up  a  hill  of  1  in  10  at  a  speed 
of  20  miles  an  hour;  the  resistance  due  to  wind  etc.  is  60  lbs.  wt.  What  is 
the  useful  horse  power  ? 

Ex.  7.  A  four  cylinder  motor  makes  1200  revs,  per  min.  (or  2400 
effective  strokes).  The  bore  of  the  cylinders  is  4  ins.  and  the  stroke  is  6  ins. 
The  mean  pressure  of  the  gas  is  60  lbs.  per  sq.  in.     Calculate  the  i.  h.  p. 

Ex.  8.  A  pump  delivers  500  gallons  of  water  per  minute  to  a  height  of 
100  ft. ;  what  horse  power  is  it  developing  ?     (1  gall,  of  water  weighs  10  lbs.) 

Ex.  9.  The  lengths  in  inches  of  equidistant  ordinates  of  an  indicator 

diagram  are,  respectively,  1-6,  1-94,  1-94,  1-8,  1-4,  1-06,  -82,  -64,  -56,  -4. 
The  stroke  is  represented  by  a  length  of  3-04  ins.  on  the  diagram.  Find  the 
area  of  the  diagram  in  sq.  ins.  If  the  scale  of  the  diagram  is  1  in.  to  50  lbs. 
per  sq.  in.,  and  1  in.  to  4  ins.  stroke,  calculate  the  mean  pressure.  If  the 
area  of  the  piston  is  30  sq.  ins.  calculate  the  work  done  in  a  stroke.  If  there 
are  100  working  strokes  per  min.,  calculate  the  i.h.p. 

Ex.  lO.  A  force  of  7  lbs.  wt.  is  found  to  extend  a  spring  3  ins.  Calculate 
the  tension  of  the  spring  when  extended  5  ins. ;  hence  calculate  the  work 
done  in  extending  it  5  ins. 

Ex.  11.  The  I.H.P.  of  an  engine  is  115,  and  its  b.h.p.  is  100.  How 
much  work  is  spent  in  a  minute  in  overcoming  internal  friction? 

Ex.  12.  If  the  frictional  resistance  to  the  motion  of  a  bicycle  and  man, 
which  weigh  together  180  lbs.,  when  running  at  6  miles  an  hour  is  3  lbs.  wt., 
find  the  power  required  to  propel  it  at  that  speed  up  a  hill  of  1  in  27. 

Ex.  13.  A  trolley  plane,  6  ft.  long,  is  tilted  so  that  one  end  is  3  inches 

higher  than  the  other  ;  a  trolley  (whose  mass  is  6  lbs.)  is  then  found  to  run 
down  with  uniform  speed  when  started.  What  is  the  force  of  friction  acting 

against  the  trolley  ? 
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Ex.  14.  A  "hill-climbing  formula"  for  motor  cars  gives  the  h.  p.  as 
the  weight  of  the  car  in  lbs.  multiplied  by  the  vertical  rise  in  ft.,  added 
to  the  length  of  the  hill  in  ft.  multiplied  by  40  lbs.  wt.  per  ton  of  car,  and 
the  result  divided  by  33,000  multiplied  by  time  of  ascent  in  mins.  Show 
that  this  formula  leads  to  a  correct  result  if  the  frictional  resistance  to  the 

car's  motion  is  40  lbs.  wt.  per  ton. 

Ex.  15.  A  sledge  of  mass  300  lbs.  is  being  dragged  by  a  horse  with 
uniform  velocity  along  a  horizontal  road.  The  two  traces  make  an  angle  of 

20°  with  the  ground  and  the  tension  in  each  trace  is  50  lbs.  wt.  Find  (1)  the 
total  pressure  between  the  sledge  and  ground,  (2)  the  force  of  friction  between 
the  sledge  and  ground,  (3)  the  coefficient  of  friction.  If  the  horse  moves  at 
3  miles  an  hour,  find  the  h.  p.  at  which  he  works. 

Ex.  16.  10  H.p.  is  to  be  transmitted  from  one  shaft  to  another  by 
means  of  a  belt.  The  pulley  on  the  former  shaft  is  2  ft.  in  diameter  and 
turns  at  100  revs,  per  min.  Calculate  (1)  the  speed  of  the  belt,  (2)  the 
difference  of  tension  between  the  tight  and  slack  sides  of  the  belt. 

Ex.  17.  The  pressure  between  a  shaft  and  its  bearings  is  2000  lbs.  wt., 
the  diameter  of  the  shaft  is  4  ins.,  and  the  speed  250  revs,  per  min.  If  the 

coefficient  of  friction  is  "02,  find  the  loss  of  power  in  the  bearings. 

Ex.  18.  A  locomotive  of  mass  60  tons  is  hauling  a  train  of  mass 
100  tons  at  a  uniform  speed  up  an  incline  of  1  in  120.  Assuming  that  the 
frictional  resistance  to  the  motion  of  locomotive  and  train  is  in  lbs.  wt. 
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which  the  locomotive  works  when  the  speed  is  [a)  30,   [h)  40  miles  per 
hour. 

Ex.  19.  A  motor  weighing  2  tons  is  maintaining  a  steady  speed  of 
30  miles  an  hour  along  a  level  road.  On  reaching  a  descent  of  1  in  20 
the  supply  of  gas  is  cut  off,  but  the  speed  still  remains  30  miles  an  hour. 
Calculate  the  effective  h.  p.  exerted  by  the  engine  when  running  at  this 
speed  on  the  level. 

Ex.  20.  A  car  weighing  1  ton  can  ascend  a  certain  hill,  which  rises 
150  ft.  in  I  mile,  at  20  miles  an  hour.  Taking  the  frictional  resistance  at 

40  lbs.  wt.,  find  the  h.  p.  at  which  the  engine  is  working. 



CHAPTEE  VI 

ENERGY 

61.  Energy.  When  a  body  is  capable  of  doing  work,  it  is 

said  to  possess  Energy.  Energy  is  the  capacity  to  do  work ;  it 
may  exist  in  a  body  in  various  forms.  For  instance,  energy  is 

stored  in  coal ;  when  a  steamship  or  locomotive  takes  in  coal  it 
becomes  capable  of  overcoming  the  resistance  to  its  motion,  and 

when  all  its  coal  is  burnt  it  has  no  energy  left  and  can  do  no 

more  work.  Blasting  powder  possesses  a  store  of  energy  ;  when 
it  explodes  it  can  do  work  in  breaking  coal  away  from  the  coal 
face,  which  otherwise  the  miner  would  have  to  do  with  his  pick. 

A  heavy  weight  which  is  raised  up  so  that  it  has  room  to  fall 

possesses  energy  ;  in  its  descent  it  can  lift  another  weight  or  drag 
it  along  against  a  frictional  resistance.  The  mainspring  of  a 

watch  possesses  energy  when  it  is  wound  up  (i.e.  coiled  up  tightly), 
for  it  can  keep  the  watch  going  against  the  frictional  resistances 
of  the  train  of  wheels. 

The  natural  method  of  measuring  energy  is  by  the  work  it  can 

do ;  hence  we  express  its  value  in  ft. -lbs.,  foot-poundals  or  ergs. 
In  dealing  with  energy  in  some  of  its  forms,  it  is  sometimes 
convenient  to  express  its  value  in  other  units;  for  instance, 

electrical  energy  is  sold  at  so  much  a  "  kilowatt-hour " ;  but  in 
every  such  case  we  can  calculate  what  this  represents  when  reduced 

to  ft. -lbs.  of  work,  though  it  is  not  usual  to  perform  the  calcula- 
tion. As  we  are  chiefly  interested  in  mechanical  energy,  we  will 

express  it  in  ordinary  units  of  work. 
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62.  Conservation  of  Energy.  Energy  can  be  trans- 

ferred from  one  body  to  another,  and  its  form  can  be  changed 
in  various  ways.  For  instance,  the  energy  of  coal  can  be 
extracted  in  the  furnace  of  a  boiler  and  transferred  to  the 

steam  ;  the  steam  can  be  passed  on  to  a  steam  engine  working 

a  pump,  which  pumps  water  up  to  an  elevated  reservoir.  The 
energy  of  the  steam  is  thus  transferred  to  the  water  in  the 
reservoir  and  is  stored  there.  If  this  water  is  made  to  drive 

a  turbine  or  water  wheel  at  a  lower  level,  and  the  turbine 

drives  a  dynamo,  the  energy  passes  with  the  electric  current 
to  the  lamps,  and  appears  there  as  heat  energy,  or  if  the  lamps 
are  not  in  use  at  the  moment  the  current  is  diverted  into  a 

battery  of  accumulators  and  the  energy  is  stored  there  until  it 

is  needed,  or  it  may  be  used  in  driving  an  electric  tram. 
Throughout  all  these  transfers  from  one  body  to  another  and 

transformations  from  one  form  to  another,  there  is  no  change  in 

the  amount  of  the  energy.  This  has  been  proved  by  a  series  of 
careful  experiments  extending  over  many  years,  and  it  is  now 
accepted  as  a  Law  of  Nature ;  it  is  of  the  utmost  value  in 

practical  life.  It  is  usually  called  the  Law  of  Conservation 
of  Energy. 

It  is  necessary  here  to  guard  against  misunderstanding  the 
above  statement.  When  the  energy  of  the  coal  was  devoted  to 

driving  the  steam  engine,  some  but  not  all  of  the  heat  energy  was 
transformed  into  mechanical  energy ;  some  of  the  heat  passes  up 
the  chimney,  for  example.  No  heat  engine  will  convert  all  the 

heat  energy  supplied  to  it  into  mechanical  energy,  but  that  part 
which  is  so  transformed  is  exactly  equal  in  amount  to  the  heat 
energy  which  has  disappeared  in  the  process.  In  fact  if  the 

mechanical  energy  so  produced  is  turned  back  into  heat  energy 

(and  this  change  can  easily  be  made  complete)  we  regain  exactly 
the  amount  of  heat  energy  which  disappeared.  Hence  in  the 
transformations  of  energy  which  we  have  described  we  must  not 

expect  that  all  the  energy  of  the  coal  will  reappear  in  the  electric 
lights;    some  remains  over  at  each  step,  and  what  reaches  the 
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lamps  is  only  a  fraction  of  what  was  used  at  the  start.  The 

meaning  of  the  law  of  Conservation  of  Energy  is  that  if  all 
these  remnants  are  taken  into  the  account,  the  sum  total  of 

energy  remains  unchanged  in  the  changes  which  the  energy  has 
undergone. 

It  must  also  be  understood  that  the  bodies  which  serve  as 

carriers  of  the  energy  during  its  changes  are  not  interfered  with 

from  outside  the  group  or  "system";  they  must  not  do  work  on 
other  bodies  or  have  work  done  on  them  by  other  bodies.  We 

can,  of  course,  secure  this  condition  by  making  the  system  large 
enough  to  include  all  such  bodies  as  can  interfere  with  those  we 

are  actually  experimenting  on.  The  law  can  be  stated  in  the 

following  way.  "  The  total  energy  of  any  system  is  a  quantity 
vjhich  can  neither  he  increased  nor  diminished  by  any  actio7i 
between  the  parts  of  the  system,,  though  it  may  he  transformed 

into  any  of  the  forms  of  which  energy  is  susceptible." 

63.  Joule^s  Equivalent.  It  would  be  out  of  place  in 
a  book  on  Dynamics  to  deal  at  length  with  the  various  forms  of 

energy  and  the  way  it  is  measured.  But  as  work  done  against 
friction  always  results  in  the  production  of  heat  energy,  we  will 
take  this  transformation  as  an  example  of  the  application  of  the 

law.  The  first  experiments  to  establish  the  law  were  made  on  the 

change  of  mechanical  into  heat  energy  by  Dr  Joule  of  Manchester, 
on  somewhat  the  same  lines. 

If  for  the  pulley  over  which  passes  the  rope  brake  described 

in  Art.  54  we  substitute  a  cylindrical  drum  of  thin  brass,  con- 
taining cold  water,  it  will  be  found  that  as  the  drum  turns  the 

water  gets  steadily  warmer.  The  rise  of  temperature  is  observed 

by  a  thermometer,  and  we  know  that  the  heat  produced  is  measured 

by  the  product  of  the  mass  of  the  water  and  the  rise  of  tempera- 
ture. Allowance  has  to  be  made  for  the  heat  used  in  warming 

the  metal  of  the  drum ;  but  this  can  be  done  by  adding  to  the 

mass  of  the  water  what  is  called  the  "  water  equivalent "  of  this 
mass  of  metal,  which  is  determined  by  a  separate  experiment. 
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And  in  dealing  with  heat  it  is  difficult  to  secure  the  non-interfer- 
ence of  surrounding  bodies,  which  we  said  above  it  is  essential  to 

secure ;  for  example,  we  have  to  be  sure  that  no  heat  energy 

passes  by  radiation  between  the  drum  and  the  walls  of  the  room. 

As  a  matter  of  fact  we  cannot  prevent  its  doing  so,  but  we  can 

either  calculate  the  amount  which  does  so,  and  allow  for  it,  or 

what  is  simpler  we  can  safely  neglect  it  by  arranging  matters  so 

that  the  final  temperature  is  as  much  above  that  of  surrounding 

bodies  at  the  end  of  the  experiment  as  it  was  below  it  at  the 

beginning.  In  that  case  the  gain  of  heat  from  surrounding 

bodies  practically  balances  its  loss  to  them. 

Under  these  conditions  it  is  found  that  the  generation  of 

heat  proceeds  at  a  uniform  rate  if  the  drum  is  turned  at  a 

uniform  rate,  and  that  in  experiments  with  different  rates  of 

turning,  different  quantities  of  water,  etc.,  for  every  foot  pound 

of  work  done  there  is  the  same  quantity  of  heat  produced,  thus 

verifying  the  law  in  this  instance. 

Ex.  1.  In  an  experiment  of  this  kind  the  tensions  on  the  two  sides  of 

the  belt  were  5*6  and  -5  lbs.  wt. ;  the  diameter  of  the  drum  was  6  ins.;  tem- 
perature of  the  water  at  beginning  was  56°  F.  and  after  680  revolutions 

was  63°  F.;  the  weight  of  water,  including  the  water  equivalent  of  the  drum, 
was  '98  lb.     Calculate  the  work  done,  and  the  heat  produced. 

The  difference  of  the  tensions  was  5-1  lbs.  wt.  The  circumference  of  the 
drum  was  tt  x  6  ins.,  so  a  point  on  its  circumference  moved  tt  x  6  x  680  ins. 
or  1068  ft.     Hence  the  work  done  was  5-1  x  1068  or  5447  ft.-lbs. 

The  rise  of  temperature  was  63  -  56  or  7°  F.  So  the  heat  produced  was 
•98  X  7  or  6-86  British  Thermal  Units  (one  b.  th.  u.  is  the  heat  which  will  raise 
1  lb.  of  water  through  1°  F.).    Hence  1  British  Thermal  Unit  is  equivalent  to 

|^„,794ft..lb8.
 

Accurate  experiments  of  this  kind  show  that  one  British 

Thermal  Unit  is  evolved  whenever  778  ft.-lbs.  of  mechanical 

work  are  converted  into  heat  energy.  This  number  is  usually 

called  Joule's  Equivalent.  By  its  means  we  can  immediately 
transform  into  ft.-lbs.  the  value  of  heat  energy  stated  in  British 
Thermal  Units. 
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64.  Potential  Energy.  A  weight  raised  above  the  ground 

can  do  work  in  descending  to  a  lower  level ;  it  is  an  example  of 

a  body  possessing  a  store  of  mechanical  energy.  When  a  body 
possesses  mechanical  energy  in  consequence  of  its  position,  or  its 

configuration  (as  in  the  case  of  a  stretched  or  bent  spring),  it  is 
said  to  have  Potential  Energy. 

As  an  example  of  the  way  in  which  this  potential  energy  is 
measured,  take  the  case  of  a  weight  of  10  lbs.  hanging  on  the 
chain  of  a  set  of  pulleys,  or  a  Weston  block,  or  some  other 

machine  which  is  arranged  to  lift  a  very  heavy  weight  or  over- 
come a  resistance  in  some  other  way.  If  this  weight  is  just 

sufficient  to  overcome  the  resistance  of  the  machine  (including 
its  frictional  resistance)  it  will  run  down  at  a  steady  pace  when 

started,  exerting  a  force  of  10  x  32-2  poundals.  If  it  descends 

4  ft.  before  reaching  the  floor,  it  will  do  10  x  32-2  x  4  or  1288  ft.- 
poundals  of  work.  So  this  is  the  work  it  was  capable  of  doing 
when  at  its  starting  level ;  hence  its  potential  energy  was  then 

10  X  32-2  x  4  ft. -poundals. 

In  general,  if  M  lbs.  be  the  mass  of  the  body,  aS'  ft.  the 
height  through  which  it  can  descend,  then  its  potential  energy 

is  MgS  ft.-poundals. 
Consider  what  becomes  of  the  energy  originally  in  the  raised 

weight  of  10  lbs.  which  we  have  taken  as  an  example.  Work  to 

the  extent  of  1288  ft.-poundals  is  done  on  the  machine.  Let  us 
assume  that  the  velocity  ratio  of  the  machine  is  4,  and  that  the 
load  which  an  effort  of  10  lbs.  wt.  can  raise  is  25  lbs.  wt.  Then 

when  the  10  lbs.  weight  drops  4  ft.,  the  25  lbs.  weight  rises 

1  ft.  ;  hence  25  x  32*2  x  1  ft.-poundals  of  work  are  done  on 
this  weight,  and  it  acquires  potential  energy  amounting  to 

25x32-2x1  ft. -poundals,  or  805  ft.-poundals.  The  remainder 
of  the  1288  ft.-poundals  of  work  done  by  the  descending  weight 
is  spent  in  overcoming  the  friction  of  the  machine ;  this  produces 
an  equal  amount  of  heat  energy.  Hence  the  potential  energy  of 

the  10  lb.  weight  is  transformed  partly  into  potential  energy  in 
another  weight,  partly  into  heat  energy. 
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Ex.  2.  A  waterfall  is  500  ft.  high.  Each  pound  of  water  falls  500  ft., 
and  loses  500  ft.-lbs.,  which  are  converted  into  heat,  yieldiui^  f  ̂|  b.  th.  u.  If 

all  the  heat  is  retained  in  the  water,  the  water  will  be  fff°  F.  warmer  at 
the  bottom  of  the  fall  than  at  the  top. 

65.  Kinetic  Energy.  Suppose  that  the  10  lb.  weight, 

described  in  the  last  Article,  is  allowed  to  fall  freely,  not  driving 
any  machine  and  with  nothing  to  check  its  fall.  It  cannot  transfer 

its  energy  to  any  other  body,  nor  change  it  into  heat  as  it  falls, 

and  yet  as  it  loses  height  it  loses  its  potential  energy.  By  the 
law  of  conservation  of  energy  we  know  that  its  energy  cannot 

disappear ;  hence  it  must  remain  in  the  body  in  some  foi  m  other 
than  potential  energy.  As  the  body  falls  and  loses  its  potential 
energy,  it  gains  speed  ;  hence  it  would  seem  that  a  body  in  motion 
must  possess  energy  merely  because  it  is  in  motion. 

The  energy  which  a  body  possesses  in  consequence  of  its  motion 
is  called  Kinetic  Energy. 

In  the  case  we  have  been  considering,  of  a  body  falling  freely 
from  rest,  we  can  calculojte  how  much  kinetic  energy  it  possesses, 
when  we  know  its  mass  and  the  distance  it  has  fallen,  because  we 

can  calculate  how  much  potential  energy  it  has  lost ;  by  the  law 
of  conservation  of  energy  this  must  be  the  amount  of  kinetic 

energy  it  has  gained.  In  the  case  of  a  10  lb.  weight  which  has 

fallen  freely  through  4  ft.,  its  kinetic  energy  must  be  10  x  4  ft.-lbs., 

orl0x32-2x4  ft.-poundals. 
But  we  ouglit  to  be  able  to  calculate  the  kinetic  energy  of  a 

body  in  motion,  however  it  acquired  its  speed ;  for  example,  if  it 
was  shot  from  a  gun.  We  can  do  this  by  finding  the  amount  of 

work  it  can  do  in  losing  its  speed,  instead  of  by  calculating  the 
amount  of  work  which  was  done  on  it  in  order  to  give  it  its 

speed ;  in  other  words,  by  seeing  how  much  energy  the  moving 
body  can  give  out  in  coming  to  rest,  instead  of  the  amount  of 

energy  it  absorbed  in  getting  up  speed. 

66.  Work  done  by  a  moving  body  in  coming  to 

rest.     We  will  tirst  find  the  value  of  the  kinetic  energy  of  a 
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particular  body,  a  carriage  of  mass  30  tons  slipped  from  a  train 

travelling  at  60  miles  an  hour.  The  kinetic  energy  is  by  definition 
the  work  it  can  do  in  consequence  of  its  motion  ;  that  is  the  work 

it  will  do  before  it  is  stopped.  We  shal^  see  that  the  work  done 
does  not  depend  on  the  time  it  takes  to  stop  it,  so  we  can  assume 

any  time  we  please ;  4  minutes  is  a  likely  time  for  the  frictional 
resistance  to  pull  it  up  without  the  help  of  the  brakes,  so  we  will 
take  that,  and  we  will  assume  that  the  frictional  resistance  is  a 
constant  force. 

In  4  mins.,  or  240  sees.,  its  speed  is  reduced  from  88  ft.  per 

sec.  to  zero ;  so  the  acceleration  is  -^-£jj  ft.  per  sec,  per  sec.  Since 
by  the  second  law  of  motion  the  force  is  the  product  of  the  mass 

and  the  acceleration,  the  resisting  force  is  30  x  2240  x  -^-^jj  poundals. 
Its  initial  speed  is  88  ft.  per  sec.  and  its  final  speed  is  zero,  so  its 

average  speed  is  J  x  88  ft.  per  sec,  so  in  the  240  sees,  it  runs 
J  X  88  X  240  ft. 

Since  the  work  it  does  in  coming  to  rest  is  the  product  of 
the  force  and  the  distance  moved,  the  work  done  in  this  case  is 

30  X  2240  X  rfj\  X  J  X  88  X  240  ft. -poundals.  This,  then,  was  the 
kinetic  energy  of  the  carriage  when  it  was  slipped  j  it  is  changed 
into  heat  energy  in  the  bearings,  etc. 

It  will  be  seen  that  the  240,  representing  the  time,  cancels 

out,  and  the  value  of  the  kinetic  energy  depends  only  on  the  mass 

(30  X  2240  lbs.)  and  the  speed  (88  ft.  per  sec),  together  with  a 
numerical  factor,  |. 

67.  General  formula  for  Kinetic  Energy.  We  will 

next  obtain  in  exactly  the  same  way  a  general  formula  for  the 

kinetic  energy  of  a  body  of  mass  m  (lbs.  or  grms.)  moving  at  a 

speed  of  v  (ft.  per  sec.  or  cm.  per  sec).  Assume  that  the  body  is 
brought  to  rest  in  t  sees,  by  a  constant  force  opposing  its 
motion. 

The  acceleration  is  -  (ft.  per  sec.  per  sec,  or  cm.  per  sec.  per, 

sec).     By  the  second  law  of  motion  the  force  is  the  product 
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the  mass  and  the  acceleration,  hence  the  constant  resisting  force 

must  be  m  X  -  (pounclals  or  dynes).    The  average  speed  of  the  body t 

is  TT  (ft.  per  sec.  or  cm.  per  sec),  so  in  t  sees,  it  moves  ^  x  ̂   (ft. 

or  cm.). 

Since  the  work  it  does  in  coming  to  rest  is  the  product  of  the 

force  and   the  distance  moved,  the  work   done  in   this  case  is 

m  X  -  X  j^x  t  or  |mv2  (ft.-poundals  or  ergs).      This  then  is  the 

initial  kinetic  energy. 

It  should  be  noted  here  that  the  constant  opposing  force  need  not  be  the 
result  of  friction,  as  it  was  in  the  case  of  the  slipped  railway  caniage;  in 
that  case  the  kinetic  energy  is  turned  into  heat  energy.  It  may  be  the 
constant  attraction  of  tlie  earth  on  the  body  itself,  when  the  body  is  projected 
vertically  upwards ;  in  that  case  the  kinetic  energy  is  turned  into  potential 
energy.  Or  it  may  be  the  resistance  opposed  by  a  water  wheel  or  turbine  to 
the  flow  through  it  of  water  or  steam ;  in  that  case  the  kinetic  energy  may 
be  turned  into  electric  energy,  if  the  turbine  is  used  to  drive  a  dynamo. 

It  should  also  be  noted  that  the  formula  \mv^  gives  a  result  in  ft.- 
poundals  or  ergs  according  as  the  British  or  c.  o.  s.  system  of  units  is  used, 
but  not  in  ft.-lbs.  This  is  a  matter  in  which  innumerable  mistakes  are 

made.  It  must  be  remembered  that  the  "  lb.  wt."  is  not  a  dynamical  unit 
and  should  be  used  only  with  the  greatest  caution  in  working  out  dynamical 
problems  ;  in  dealing  with  work  it  is  often  convenient  to  use  that  unit,  and 
after  the  value  of  the  kinetic  energy  has  been  calculated  in  ft-poundals  it  is 
therefore  advisable  to  reduce  it  to  ft.-lbs.,  by  dividing  the  number  of  ft.- 

poundals  by  32-2  (see  Art.  43). 

Ex.  3.  A  body  of  mass  12  lbs.  moves  at  6  ft.  per  sec.  What  is  its 
kinetic  energy  in  ft.-poundals?     State  its  value  in  ft.-lbs. 

It  is  brought  to  rest  by  a  constant  force  in  a  distance  of  6  ft. ;  what  is  the 
value  of  the  force  ? 

Ex.  4.  A  bullet  weighs  1-75  grms.  and  moves  at  300  metres  per  sec; 
what  is  its  kinetic  energy  ?  It  acquired  this  speed  while  moving  15  cm.  in 
the  barrel  of  a  pistol  under  a  constant  force ;  what  was  the  force? 

Ex.  5.  An  engine  and  train  together  weigh  200  tons,  and  acquire  a 
speed  of  60  miles  an  hour  in  3  minutes  from   rest.     What   is  the  final 

8—2 
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kinetic  energy  ?  Neglecting  frictional  resistances,  if  the  horse-power  of  the 
engine  is  constant,  what  is  its  value?  If  the  tractive  force  is  constant 
throughout,  what  is  the  greatest  value  of  the  h,  p.? 

The  K.  E.  is  1  X  200  x  2240  x  882  ft.-poundals  or  1735  million  ft.-poundals, 

or  53-9  million  ft. -lbs.     Hence  the  work  done  j^er  min.  is  ̂   x  53*9,  or  17 '97, 

million  ft. -lbs. ;   hence  the  constant  horse-power  required  is       '       '         or 
Oo,L)Ut) 544  H.  P. 

But  if  the  tractive  force  is  constant  throughout,   the   acceleration  is 
88 

constant,  and  equal  to   - — — ■  ft.  per  sec.  per  sec.     Hence  the   necessary o  X  bO 

88 
tractive  force  is  200  x  2240  x  - — -x  poundals,  or  6800  lbs.  wt.     When  the 3  X  bO 

speed  is  60  miles   an   hour,   work   is  done   by  this  force   at  the  rate   of 

6800x1760x3  ft. -lbs.  per  min.,  and  the  h.p.  is  then  1088  h.p.  ;  this  is 
its  greatest  value,  and  it  rises  from  0  at  the  start  to  1088  h.  p.  at  full  speed. 

Ex.  6.  If  an  aeroplane  is  loaded  to  a  total  of  1200  lbs.,  and  the 
effective  h.p.  at  the  propeller  is  44,  how  long  will  it  take  to  attain  a  speed 
of  60  miles  an  hour  from  rest,  if  frictional  resistance  is  neglected? 

The  kinetic  energy  at  lull  speed  can  be  calculated,  and  we  know  that  in 

each  minute  the  kinetic  energy  is  increased  by  44  x  33,000  ft. -lbs. 

ZSx.  7.  A  bullet  of  mass  1  oz.  moving  at  1500  ft.  per  sec,  strikes  a 

target  and  falls  dead.  Find  the  loss  of  kinetic  energy,  expressed  in  ft.- 

poundals  and  ft.-lbs. 

*Ex.  8.  If  778  ft.-lbs.  of  work  are  equivalent  to  1  British  Thermal  Unit 
(see  Art.  63),  calculate  the  number  of  British  Thermal  Units  generated 
in  Ex.  7. 

2184  ft.-lbs.  are  equivalent  to  -177^3-  or  2*8  b.  th.  u.   So  the  heat  generated 
778 

would  raise  the  temperature  of  1  oz.  of  water  through  16  x  2-8°  F.  Since  the 
specific  heat  of  lead  is  -0315,  the  heat  generated  would  raise  the  temperature 

of  1  oz.  of  lead  through  ̂   ̂   .^  or  1426°  F.     But  lead  melts  at  635°  F.,  and 

its  latent  heat  of  fusion  is  5-37,  so  if  the  heat  generated  remains  in  the  bullet, 
it  will  be  completely  melted  by  the  blow. 

*Ex.  9.  A  steel  shell  weighing  12  lbs.  moving  at  a  speed  of  1200  ft  per 
sec.  is  brought  to  rest  by  striking  a  piece  of  armour  plate ;  calculate  the 
number  of  b.  th.  u.  which  are  generated.  If  all  the  heat  is  spent  in  heating 
the  shell,  what  will  be  its  rise  in  temperature,  the  specific  heat  of  steel 

being  -118? 
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68.  Kinetic  Energy  of  a  number  of  moving  bodies. 

If  several  bodies  are  moving  with  different  velocities  in  different 
directions,  we  can  find  the  total  kinetic  energy  of  the  whole 

group  by  calculating  the  kinetic  energy  of  each  body  separately, 
and  adding  the  results  together.  For  the  value  of  the  kinetic 

energy  of  the  whole  group  in  ft.-poundals  is  the  work  which  can 
be  done  before  the  whole  comes  to  rest,  and  each  body  contributes 
its  share  to  this  total,  whatever  be  its  direction  of  motion.  For 

the  amount  of  heat  or  other  form  of  energy  generated  when  a 
certain  amount  of  work  is  done  does  not  depend  on  the  direction 

of  the  displacement,  but  on  the  product  of  its  magnitude  and  the 
acting  force  in  the  same  direction. 

69.  Exper' mental  verification  of  formula  for 
kinetic  energy.  Fasten  a  long  spiral  spring  to  a  hook  at 

the  back  end  of  the  plane  as  in  Fig.  44 ;  to  the  other  end  of  the 

PS 
^rmmrm^ 

Fig.  44. 

spring  fasten  a  thread  long  enough  to  pass  over  the  pulley,  and 
attach  weights  to  the  thread  until  the  spring  has  been  stretched 
so  that  its  end  reaches  to  a  marked  point  A  exactly  5  inches 
from  the  end  of  the  unstretched  spring.  In  a  particular  case 

the  weight  required  was  -85  lb.  Then  (see  Art.  57)  the  average 

force  during  the  extension  was  J  x  -85  lb.  wt.  and  the  work  done 
during  extension  {i.e.  the  potential  energy  stored  in  the  stretched 

spring)  is  ̂   X  -85  x  -f^  ft. -lbs.  or  J  x  -85  x  ̂ v  x  '^2-2  ft.-poundals, 
or  5-703  ft.-poundals. 

Tilt  the  plane   until  a   trolley    will   run   down   towards   the 
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spring  with  uniform  speed  ;  attach  the  thread  to  the  trolley  so 
that  when  the  trolley  is  at  the  top  of  the  plane  the  spring  is 

stretched  to  the  point  A.  Arrange  a  vibrating  spring  making 
a  known  number  of  vibrations  a  second^o  that  you  can  measure 

the  speed  of  the  trolley  after  the  spring  has  contracted  to  its 
unstretched  lengtli.  Hold  the  trolley  so  that  the  end  of  the 

spring  is  exactly  at  A  ;  release  it,  and  determine  its  speed  after 

the  spring  has  ceased  to  act  on  it.  The  speed  was  found  to  be 

1-3  ft.  per  sec,  and  its  mass  was  6-8  lbs.  The  formula  for  the 

kinetic  energy  gives  J  x  6*8  x  1-3^  ft.-poundals,  or  5" 745  ft.- 
poundals. 

Now  the  potential  energy  of  the  spring  has  disappeared,  and 

the  kinetic  energy  of  the  trolley  has  appeared ;  there  can  be  no 
transformation  into  other  forms  of  energy,  since  the  friction  was 

counterbalanced ;  hence  the  kinetic  energy  of  the  trolley  must 

be  equal  to  the  potential  energy  of  the  spring.  So  the  expression 

^mv'^  ft.-poundals  gives  in  this  case  an  approximately  correct  value 
for  the  kinetic  energy  of  a  body  of  mass  m  lbs.  moving  with  a 

speed  of  -y  ft.  per  sec. 

70.     Use   of  kinetic   energy  in   solving  problems. 

The  law  of  conservation  of  energy  furnishes  us  with  a  short  cut 

to  the  solution  of  many  dynamical  problems,  if  we  do  not  want 

to  know  the  position  of  the  bodies  at  every  instant  throughout 
the  motion.  If  we  know  that  there  is  no  loss  of  mechanical 

energy,  i.e.  that  no  other  form  of  energy  is  produced  during  the 
motion,  the  sum  of  the  potential  and  kinetic  energies  must  be 
constant.     We  will  take  various  examples  of  this. 

(i)  Suppose  a  man  stands  on  a  cliff  100  ft.  above  the  sea, 
and  throws  a  stone  in  any  direction  with  a  speed  of  50  ft.  per  sec. 

What  will  be  its  speed  on  striking  the  sea,  if  the  resistance  of 

the  air  is  neglected?  If  the  stone  has  a  mass  of  w  lbs.,  its 

kinetic  energy  at  first  is  Jm  50^  ft.-poundals.  On  reaching  sea- 
level  it  has  lost  mx32-2xl00  ft.-poundals  of  potential  energy. 
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so  its  total  kinetic  energy  is  \m  50^  +  m  x  32-2  x  100  ft.-poundals. 

If  its  speed  is  v  ft.  per  sec,  its  kinetic  energy  is  Jmv- ft.-poundals, 
so  V  can  be  calculated  from  the  equation 

Jmv^  =  |m  50^  +  m  X  32-2  x  100. 

Ex.  lO.  A  stone  whose  mass  is  1  lb.  is  thrown  vertically  upwards  with 
a  speed  of  50  ft.  per  sec.  How  high  will  it  rise  before  all  its  kinetic  energy 
is  converted  into  potential  energy  ? 

(ii)  Let  a  trolley  of  mass  M  lbs.  stand  on  a  plane  sloped  to 

balance  frictional  resistances  ;  let  a  weight  of  m  lbs.  be  attached 

to  it  by  a  string  passing  over  a  pulley.  Let  them  start  from 

rest ;  call  their  velocity  v  ft.  per  sec.  after  they  have  moved  s  ft. 

Then  the  loss  of  potential  energy  in  the  weight  is  rngs  ft.- 

poundals,  and  the  gain  of  kinetic  energy  is  \Mv^  ft.-poundals  in 

the  trolley  and  ̂ mv^  ft.-poundals  in  the  weight,  or  a  total  gain 

of  I"  (-^  +  7a) v^  ft.-poundals. 

Hence  J  {M  +  m)  v^  =  mgs. 

Owing  to  the  downward  slope  of  the  plane,  the  trolley  has 

lost  some  potential  energy,  but  this  is  turned  into  heat  energy 

through  friction,  so  neither  appears  in  the  above  equation. 

Ex.  11.  A  mass  of  1  lb.  is  attached  to  a  trolley  of  mass  6  lbs.;  work 

out  as  above  the  speed  when  the  trolley  has  moved  18  inches. 

*Ex.  12.  Call  the  tension  of  the  string  in  the  above  arrangement  T 
poundals.  Then  the  work  which  this  force  does  on  the  trolley  is  Ts  ft.- 

poundals.     Hence  Ts  =  \Mv'^.     Substituting  the  value  of  hv"^  from  the  above 
^  ni      i,T   fnf/s          .„      Mm  T  , 

equation,  we  get  Ts  =  M  —   or  J^=jf   .  <jf  poundals. 

*Ex.  13.  Find  in  lbs.  wt.  as  in  Ex.  12  the  tensions  of  the  string  by 
which  (i)  a  1  lb.  weight,  (ii)  a  ̂   lb.  weight,  pulls  a  4  lb.  trolley. 

The  change  of  energy  in  this  and  similar  cases  can  be  repre- 

sented graphically,  as  follows.  Draw  the  force-displacement 
curve,  taking  as  abscissae  the  displacements,  and  as  ordinates 

the  acting  forces ;  then  (see  Art.  55)  the  area  bounded  by  this 

curve,  the  ordinates  at  its  ends  and  the  horizontal  axis  represent 
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the  work  done  during  the  displacement.    This  area  will  therefore 

represent  the  gain  or  loss  of  energy. 
Take  as  an  example  the  case  of  a  J  lb. 

weight  attached  to  a  4  lb.  trolley.  The 

force  of  gravity  is  ̂   x  32-2  or  16*1 
poundals,  so  the  work  done  by  gravity 

in  a  displacement  of  2  ft.  is  16-1  x  2  ft.- 
poundals,  and  this  is  represented  in 

Fig.  45  by  the  area  0'2PN,  measured 
in  ft.-poundals.  Hence  the  area 
02 PN  represents  also  the  loss  of 

potential  energy  of  the  weight,  and, 
tlierefore,  the  total  kinetic  energy  of 

the  trolley  and  weight  acquired  in  running  a  distance  represented 

by  O'l.     Since  the  speeds  of  the  trolley  and  weight  are  the  same, 
this  total  kinetic  energy  is  shared 

between  them  in  proportion  to 
their  masses.  A  horizontal  line 

through  this  area  is  drawn  to 
divide  it  into  two  parts  in  the 

proportion  4  to  |,  and  hence 
these  parts  represent  the  kinetic 

energies  of  the  trolley  and  weight 
respectively. 

(iii)  Suppose  that  two  weights, 
A  of  m^  lbs.  and  B  of  m.^  lbs.  (of 
which  m^  is  the  greater),  are 

connected  by  a  light  cord  and 

hung  over  a  light  frictionless 
pulley  as  in  Fig.  46.  Suppose 

th-xt  they  have  moved  a  distance 
of  s  ft.  under  the  action  of  gravity, 

and  that  they  have  acquired  a 

speed  of  v  ft.  per  sec.  ;  A  will  of 
course  be  moving  upwards  and  B  downwards,  and  their  speeds 

Fis;.  46. 
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must  be  equal  since  they  are  connected  by  a  cord.  A  has 

gained  potential  energy  to  the  extent  of  m-^gs  ft.-poundals,  and  B 

has  lost  potential  energy  to  the  extent  of  m^ga  ft.-poundals.  A 

has  gained  kinetic  energy  to  the  extent  of  ̂ m-^v^  ft.-poundals,  and 

B  has  gained  kinetic  energy  to  the  extent  of  ̂ mgV' ft.-poundals. 

Considering  the  two  bodies  together  as  one  "  system,"  there  can 
be  no  change  in  the  total  energy  (since  none  has  been  transformed 

into  heat,  etc.) ;  hence  the  gain  must  on  the  whole  equal  the  loss. 

Hence  fn^gs  +  JwjV-  +  ̂TngV^  =  'm2gs, 

or  I  (m^  -I-  nio)  v-  ■=  (m.2  —  m^)  gs. 

From  this  equation  the  velocity  at  any  point  can  be  calcu- 
lated. 

Ex.  14.  If  the  two  weights  are  14  lbs.  and  15  lbs.,  find  as  above  their 
speed  when  they  have  each  moved  through  2  ft. 

*Ex.  15.  Call  the  tension  of  the  string  in  the  above  arrangement  T 
poundals.  Then  the  work  which  this  force  does  on  A  is  Ts  ft.-poundals. 

Tbe  gain  in  energy  of  A    is   m^gs  +  ̂m-^v'^  ft.-poundals.     Substituting   the 

value  of  V-  from  the  above  equation  we  get  T= 

2n?iWi2 

g  poundals. 
*Ex.  16.     Work  out  as  in  Ex.  15  the  tension  of  the  string  connecting 

weights  of  7  and  10  lbs. ;  express  the  result  in  lbs.  wt. 

Fig.  47  represents   these  clianges  of  energy,  graphically  as 
before,  in  a  case  where  A  has  a  mass  of  7  lbs.  and  B  a  mass  of 

200- 
100 

9  lbs.,  after  movinj 

KE  of  71b.  weight.  ̂ ^^^^  = 

•KE  of  91b.  weight.       1  in.  to  2  ft 1  in.  to  400  poundals. 

1  sq.  in.  to  800  ft.-poundals. 

S  in  ft. 
1 

Fig.  47. 

through  1  ft.  from  rest.     The  rectangle  OA 
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2-6  ft. 

represents  the  loss  of  p.  e.  of  the  larger  weight,  and  rectangle  OB 

represents  the  gain  of  p.  e.  of  the  smaller  weight.  Hence  the 

remainder  of  OA  represents  the  k.  e.  acquired  b}^  the  two  weights. 
As  before  this  area  is  divided  into  two  p^rts  to  show  the  kinetic 

energies  of  the  two  weights  separately,  by  dividing  AB  in  the 
ratio  7  to  9. 

*(iv)     Suppose  we  have  a  "  simple  pendulum  "  consisting  of 
a  "bob"  of  mass  -2  lb.  hung  by 
a  string  of  length  3  ft.  ;  assume 
that  the  string  is  so  light  that  its 

weight  may  be  neglected,  that  the 
bob  is  so  small  that  we  can  treat 

it  as  if  its  whole  mass  was  con- 
centrated at  its  centre  of  gravity, 

;  and    that   we    may    neglect    the 
\  frictional  resistance  of  the  air  to 

Cj  the  motion.  If  the  bob  is  drawn 
aside  until  the  string  makes  an 

angle  of  30°  with  the  vertical,  it 
will  then  be  at  a  vertical  distance 

below  its  point  of  support  of 

3  cos  30°,  or  2  60  ft. 

Hence  it  has  been  raised  through  3-0  —  2-60  or  -40  ft.  from  its 
lowest  position  (when  the  string  was  vertical),  so  its  potential 

energy  is  "2  x  32*2  x  4  or  2*58  ft.-poundals.  If  the  bob  is  now 
released,  it  will  swing  to  its  lowest  position,  and  the  potential 

energy  will  be  changed  into  kinetic  energy ;  if  v  ft.  per  sec. 

is  its  velocity  as  it  passes  through  this  point,  its  kinetic  energy 

is  J  X  "2  X  v^  ft.-poundals,  so  by  the  law  of  conservation  of  energy 

Fig.  48. 

i 2 -58  ft.-poundals. 

Hence  the  value  of  v  may  be  calculated ;  and  in  a  similar 

way  its  speed  at  any  point  may  be  found.  (Note  that  this 

method  does  not  give  us  the  speed  or  position  at  any  instant.) 
The  same  law  shows  that  the  kinetic  energy  at  its  lowest 
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point  will  produce  the  original  amount  of  potential  energy  when 

the  bob  again  conies  to  rest ;  i.e.  it  rises  to  the  same  height  on 
the  other  side  of  the  centre  line. 

Ex.  17.  Find  the  kinetic  energy  and  hence  the  speed  at  the  lowest 

point,  when  the  string  was  inclined  at  10°  to  the  vertical  at  starting. 
Ex.  18.  During  the  swing  the  string  encounters  a  fixed  peg  1  ft. 

vertically  below  the  point  to  which  the  string  is  attached ;  draw  a  diagram 
to  show  the  position  of  the  bob  when  at  its  highest  point. 

The  changes  of  energy  can  be  shown  on  a  diagram  as  follows. 

Take  the  case  of  a  bob  of  mass  '1  lb.  on  the  end  of  a  string 
1  ft.  long.  On  the  force  displacement  diagram  (Fig.  49)  take 

OA  to  represent  1  ft.,  the  vertical  displacement  when  the  string 

KZ.ofbob. 
Scale :  1  in.  to  1  ft. 

1  in.  to  8  poundals. 

1  sq.  in.  to  8  ft. -poundals. 

A  S  in  ft. 

is  inclined  90°  to  the  vertical,  and  mark  off  distances  along  OA 
to  represent  on  the  same  scale  the  vertical  heights  above  the 

lowest  point  for  different  inclinations  of  the  string ;  these  lengths 

can  be  taken  from  a  table  of  natural  cosines.  For  example,  for 

an  inclination  of  45°  the  length  OK  will  be  1  —  cos  45°  or 
•2929  ft. 

Take  on  the  force  axis  the  point  C  representing  -1  x  32*2 
poundals;  then  the  rectangle  AC  will  represent  the  potential 

energy  of  the  bob  when  the  string  is  horizontal,  and  the  rect- 

angle KC  gives  its  potential  energy  when  the  string  is  inclined 

at  45°,  and  so  on.  If  we  start  the  bob  from  rest  with  the  string 

at  an  angle  of,  say,  60°  (i.e.  at  a  vertical  height  OL  above  the 
lowest  point)  its  potential  energy  is  represented  by  the  rectangle 
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LC.  When  the  bob  has  dropped  till  the  string  has  an  inclination 

of  45°,  the  potential  energy  will  be  given  by  the  rectangle  KC, 
and  therefore  the  loss  of  p.  e.  will  be  given  by  rectangle  LE^ 

so  the  kinetic  energy  at  this  point  of  its  swing  is  given  by 
rectangle  LE. 

On  the  scale  of  Fig.  49,  the  length  KL  is  -207  in.,  and  KE 

is  -4025  in.,  so  the  area  LE  is  '0833  in.,  which  represents 
•666  ft.-poundals.  Hence  if  v  ft.  per  sec.  be  the  speed  of  the 

bob  when  the  string  is  inclined  at  45°  we  have  ̂   x  4  x  t?-  -  '666, 
or  v  =  3"65  ft.  per  sec. 

In  a  similar  way  we  can  find  the  kinetic  energy  (and  hence 

the  speed)  at  any  point  of  the  swing,  whatever  the  length  of  the 
string  or  the  height  from  which  the  swing  started. 

■^(v)  Take  a  spiral  spring,  and  suspend  it  from  a  fixed  point. 
Let  its  lower  end  when  unstretched  stand  at  A. 

Hang  a  weight  of  m  lbs.  on  it ;  when  it  has  come 

to  rest  let  the  lower  end  of  the  spring  stand  at  0. 

Denote  the  distance  AO  hj  a  ft.  The  tension  of  the 
spring  in  this  state  is  mg  poundals.  We  know  that 
in  a  spiral  spring  the  extension  is  proportional  to  the 

tension,  so  for  any  other  position  of  the  bottom  of 
the  spring,  x  ft.  below  A,  the  force  it  will  exert  will 

5^       O     be  -  m^  poundals. Cb 

Draw  the  force-distance  curve  RA  for  the  spring 
as  in  Fig.  51,  which  is  drawn  for  a  particular  case 
but  of  course  illustrates  the  general  case.     Then  the 

Fig.  50.        SiTQa,  of  the  triangle   OR  A  represents  the  potential 
energy  stored  in  the  spring  when  its  bottom  end  is  at  0. 

Now  pull  the  weight  down  through  a  distance  h  ft.  (less 

than  ffl),  so  that  the  lower  end  of  the  spring  comes  to  B ;  let 
OB  represent  h  ft.  In  this  operation  an  additional  amount  of 

potential  energy  is  stored  in  the  spring,  represented  by  the  area 

ORPB,  and  the  potential  energy  of  the  weight  is  decreased  by 
an  amount  represented  by  the  area  ORNB  (since  OR  represents 

( 
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tlie  attraction  of  the  earth  on  the  weight) ;  hence  the  work  done 
in  pulling  it  down  is  represented  by  the  area  RNP. 

If  the  weight  is  now  released,  it  will  rise  because  the  tension 

of  the  spring  (which  is  now  PB)  is  greater  than  the  weight; 
when  it  reaches  a  point  X,  the  weight  will  have  acquired  potential 

energy  represented  by  the  area  NX,  and  the  spring  will  have 
given  out  potential  energy  represented  by  the  area  pXBP.  The 
difference  between  these  (i.e.  the  area  piiNP)  must  therefore 
have  taken  the  form  of  kinetic  energy  in  the  weight ;  hence  we 

can  calculate  the  velocity  {v  ft.  per  sec.)  of  the  weight  at  any 

Scale : 
1  iu.  to  -8  ft. 
1  in.  to  400  poundals. 

1  sq.  in.  to  320  ft. -poundals. 

X  Distance X        O  B 
Fig.  51. 

given  point  of  its  upward  path,  since  we  know  the  value  of  ̂ mv^. 
When  it  reaches  0  the  weight  will  have  kinetic  energy  repre- 

sented by  the  area  PR^,  so  it  will  rise  beyond  this  point  and 
will  continue  to  rise  until  this  kinetic  energy  has  been  converted 

into  potential  energy  again.  Suppose  this  happens  when  it 

reaches  the  point  B'.  Then,  since  passing  0  the  potential  ener<j:y 
of  the  weight  has  increased  by  the  area  RN'B'O,  and  the  potential 

energy  of  the  spring  has  decreased  by  the  area  RP'B'O ;  hence 
there  has  been  an  increase  of  potential  energy  represented  by  the 

area  RN'P'.  Hence  RN'P'  is  equal  in  area  to  PRN ;  since  these 

triangles  are  similar,  RN'  —  RN.  Hence  the  weight  will  rise 
as  far  above  0  as  it  started  below  it,  before  losing  its  kinetic 

energy  ;  it  will  then  fall  again,  and  oscillate  about  the  equi- 
librium position  0.  These  results  can  easily  be  verified  by 

experiment. 
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Ex.  19.  For  a  mass  of  7  lbs.,  a  is  found  to  be  -6  ft.  If  h  is  -4  ft.,  find 
the  kinetic  energy  of  the  weight  as  it  passes  0,  and  hence  its  velocity,  using 
Fig.  51  (which  is  drawn  for  this  case),  or  one  to  a  much  larger  scale. 

Ex.  20.  In  above  case,  find  the  kinetic  energy  of  the  weight,  and 
hence  its  velocity,  when  it  is  '3  ft.  from  0.  * 

It  will  be  convenient  for  later  use  to  calculate  the  resultant 

force  on  the  weight,  as  well  as  its  velocity,  at  any  point  X  of 
its  path.  The  resultant  force  is  the  difference  of  the  upward  pull 

of  the  spring  (represented  by  pX)  and  the  weight  (or  nX) ;  and 

by  similar  triangles  ̂   =  -yj .  If  we  denote  the  distance  OX  of 

the  weight  from  0  hy  y  ft.,  this  gives 

resultant  force  =  y  >^  —  poundals. 

Hence  the  force  on  the  weight  is  proportional  to  its  distance 

from  0;  and  it  is  always  directed  towards  0,  since  at  points 

above  0  the  pull  of  the  spring  is  less  than  the  weight. 

Ex.  21.  For  the  case  of  Ex.  19,  determine  the  force  on  the  weight  when 

it  is  (a)  -4  ft.  below  0,  [b]  -1  ft.  below  0  and  (c)  -4  ft.  above  0. 

71.  Problems  involving  unmechanical  forms  of 
energy.  Many  problems  in  which  there  is  a  transformation 

of  kinetic  or  potential  energy  into  heat  or  some  other  form  of 

energy  can  be  solved  by  applying  the  law  of  conservation  of 
energy.  For  example,  take  the  case  of  a  man  riding  a  bicycle 

at  5  miles  an  hour,  who  starts  free-wheeling  down  a  slope  of 
1  in  20,  200  yards  long;  suppose  that  he  and  his  bicycle  together 

weigh  180  lbs.,  and  that  the  frictional  resistance  to  motion  is 
7  lbs.  wt.  We  can  find  his  speed  at  the  bottom  as  follows.  He 

descends  a  vertical  height  of  ̂ V  ̂  ̂^^  y^"^-  ̂ ^^  ̂ ^  ̂^-^  ̂ ^  ̂ ^  loses 
potential  energy  to  the  extent  of  180  x  32*2  x  30  ft.-poundals. 

His  initial  speed  is  /g-  x  88  or  7*33  ft.  per  sec,  so  his  initial 

kinetic  energy  is  |^  x  180  x  7  "33^  ft.-poundals.  The  work  done 
against  the  frictional  resistance  (which  is  7  x  32*2  poundals)  in 
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travelling   200  x  3  ft.   is   7  x  32-2  x  200  x  3  ft.-poundals.     Hence 
the  kinetic  energy  at  the  bottom  is 

i  X  180  X  7-332  +  180  X  32-2  X  30  -  7  X  32-2  X  200  x  3  ft.-poundals 

or  43,440  ft.-poundals.     If  his  speed  there  is  v  ft.  per  sec,  his 

kinetic  energy  is  ̂   x  180  x  v^  ft.-poundals;  hence 

■ix  180  x-y^z:.  43,440  or  v  =  21-97  ft.  per  sec. 

or  15  miles  an  hour,  about. 

Ex.  22.  How  far  will  this  bicycle  now  run  up  a  slope  of  1  in  30?  Call 

the  distance  x  feet ;  then  the  vertical  rise  is  ̂ttt  ft.,  so  the  gain  of  potential 

energy  is  180  x  32-2  x  ̂   ft.-poundals.     The  work  done  against   friction  is 

7  X  32-2  X  X  ft.-poundals. 

Hence  43,440=  180  x  32-2  x  ̂  +  7  x  32-2  x  x. 

Ex.  23.  The  car  and  passengers  of  a  switch-back  weigh  15  cwt.,  the 
frictional  resistance  is  28  lbs.  wt.  The  car  starts  from  rest  at  a  height  of 

20  ft.,  descends  a  slope  of  1  in  5  to  ground  level,  then  runs  up  a  slope  of  1 
in  10.  Find  the  speed  at  ground  level,  and  the  distance  it  will  run  up  the 
slope  before  coming  to  rest. 

Ex.  24.  A  "  6-inch"  gun  weighs  7  tons  8  cwt.,  and  after  it  is  fired  it 
begins  to  recoil  at  a  speed  of  15  ft.  per  sec.  Find  its  kinetic  energy.  The 

recoil  is  stopped  in  13*3  inches  by  a  constant  force ;  find  its  magnitude. 
Its  kinetic  energy  is  1*865  million  ft.-poundals.     If  x  poundals  is  the 

13 '3 
frictional  resistance,  the  work  done  by  this  kinetic  energy  is  a:  x       '-  ft.  - 

poundals,  from  which  we  get  a;=  1*683  million  poundals,  or  23-33  tons  wt. 

Ex.  25.  A  12-inch  gun  weighs  50  tons,  and  after  it  is  fired  it  begins  to 

recoil  at  a  speed  of  18-42  ft.  per  sec.  Find  its  kinetic  energy.  The  recoil  is 
stopped  in  18  inches  by  a  constant  force ;  find  its  magnitude, 

72.  Storage  of  Energy.  Energy  is  more  valuable  than 

any  material  in  the  world  ;  without  it  the  world  would  be  dead. 

Human  beings  have  passed  through  a  Stone  Age,  a  Bronze  Age, 

etc.,  when  they  could  avail  themselves  only  of  the  energy  in 

themselves  or  animals,  and  could  effect  comparatively  little.  This 

is  an  Age  of  Energy,  in  which  we  utilise  the  energy  stored  in 
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coal  (which  we  are  using  up  many  thousand  times  faster  than  it 

was  accumulated  and  so  are  "  living  on  our  capital "),  and  to  a 
small  extent  we  utilise  the  energy  of  waterfalls  (which  is  a  case 

of  "living  on  income").  When  we  have  extracted  the  energy 
from  coal,  it  is  often  convenient  to  store  it  temporarily,  in  order 

to  meet  fluctuations  in  the  demand  or  supply ;  for  example,  an 
electric  tramway  makes  a  very  variable  demand  on  the  output 

of  power,  for  each  tramcar  calls  for  a  very  rapid  expenditure  of 

energy  when  it  is  started,  and  returns  some  energy  to  the  mains 
when  it  is  stopped.  To  ensure  enough  power  to  start  several 
cars  at  once  would  demand  a  very  large  engine,  which  would 

often  be  working  far  below  its  maximum  output,  and  therefore 

inefficiently  ;  so  a  smaller  engine  is  used,  which  transforms  energy 

at  a  steady  rate  and  this  energy  is  stored  (in  batteries  of  accumu- 
lators) to  meet  exceptional  demands.  In  the  same  way,  the 

human  body  stores  for  a  few  hours  the  energy  derived  from  food, 

which  can  be  used  as  required. 

Again,  consider  a  single  cylinder  petrol  motor  driving  a 

motor  car  or  motor  bicycle ;  it  is  only  during  one  stroke  out 
of  four  that  it  is  doing  work,  and  part  of  the  energy  it  draws 

from  the  petrol  has  to  be  stored  during  the  working  stroke  in 
order  to  provide  for  the  demand  during  the  next  three  strokes. 

This  can  be  done  by  the  car  or  bicycle  itself ;  it  acquires  enough 

kinetic  energy  during  the  working  stroke  to  overcome  the 
frictional  resistance  to  its  motion  during  the  next  three  strokes. 

But  the  result  is  a  jerky  kind  of  motion,  for  the  accumulation 

of  kinetic  energy  in  the  car  means  an  increase  of  speed,  which 
decreases  again  as  the  store  of  kinetic  energy  is  drawn  upon,  so 
that  every  working  stroke  of  the  engine  would  be  noticeable. 

This  is  actually  the  case  in  paddle  steamers,  where  the  engines 

generally  make  comparatively  few  strokes  a  minute ;  at  the  be- 
ginning and  end  of  these  strokes  the  engine  is  working  at  a 

disadvantage  (see  Art.  47)  and  the  stored  kinetic  energy  of  the 

ship  is  drawn  upon,  so  that  it  is  quite  possible  to  perceive  the 
alternate  acceleration  and  retardation. 
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Ex.  26.  Consider  a  single  cylinder  motor  cycle,  weighing  with  the  rider 
400  lbs.,  going  at  40  ft.  per  sec.  (about  27  miles  an  hour) ;  and  suppose  the 
frictional  resistance  of  the  road,  wind,  etc.,  is  10  lbs.  wt.,  and  that  at  the 
given  speed  the  engine  makes  2400  strokes  per  minute.  Suppose  for 
simplicity  that  the  rider  is  rigidly  attached  to  the  cycle,  forming  one  body 
with  only  a  simple  motion  of  translation  forwards. 

In  1  sec.  the  bicycle  moves  40  ft.  and  makes  40  strokes,  hence  it  moves 

1  ft.  during  a  stroke.  In  moving  1  ft.  it  does  10  x  32-2  x  1  or  322  ft. -poundals. 
So  in  moving  4  ft.  it  does  1288  ft.-poundals ;  and  all  this  energy  is  provided 
by  the  engine  in  one  working  stroke,  since  only  one  stroke  out  of  four  is  a 

working  stroke.  During  the  working  stroke  322  ft.-poundals  will  be  used  up, 
so  the  balance,  or  1288  -  322,  or  966  ft.-poundals  is  stored  up  to  be  expended 
in  the  remaining  3  ft.  before  the  next  working  stroke  begins.  This  may  be 
represented  as  in  Fig.  52,  0  is  the  position  at  the  beginning  of  a  working 

stroke,  the  area  OA  represents  the  1288  ft.-poundals  provided  by  the  engine 
in  a  working  stroke  (assuming  that  the  engine  provides  it  steadily  throughout 
the  stroke)  and  OB  represents  the  energy  spent  during  the  4  ft.  run.  At  any 
point  X  the  work  done  by  the  engine  is  represented  by  OP,  and  the  work 
spent  by  OQ,  hence  the  kinetic  energy  added  is  represented  by  the  shaded 
area.  At  the  end  of  the  working  stroke  the  addition  of  kinetic  energy 

reaches  966  ft.-poundals,  as  we  have  seen.  At  a  later  point  F,  this  will 
have  been  reduced  by  the  work  represented  by  rectangle  GY,  and  after  4  ft. 
from  0  it  will  all  have  been  expended. 

1288 
lOOOf 

Q-  Scale : 

...,  P  A  1  in.  to  4  ft. 

% 
1  in.  to  4000  poundals. 

1  sq.  in.  to  16000  ft.-poundals. 
XI       2   Y  3       A   ft 

Fig.  52. 

Therefore  the  kinetic  energy  of  rider  and  bicycle  will  vary  by  this  amount, 

966  ft.-poundals.  Now,  if  we  neglect  the  kinetic  energy  of  the  separate 
moving  parts,  wheels,  etc.,  and  regard  only  the  forward  speed  of  the  whole, 

the  average  kinetic  energy  is  ̂   x  400  x  40-^  or  320,000  ft.-poundals;  so  the 
variation  is  roughly  1000  in  300,000  or  J  %. 

It  is  worth  while  examining  this  a  little  more  closely,  to  find  out  whether 
this  variation  will  be  noticeable.  We  may  use  round  numbers  for  this 
purpose,  and  assume  that  the  kinetic  energy  varies  between  319,500  and 
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/2  X  319  500 
320,500  ft.-poundals ;  then  the  speed  will  vary  between  w   jryr    and 

a/    -r-^   ,  i.e.  between  39'97  and  40-03  ft.  per  sec.    Hence  in  a  working 

stroke  (i.e.  ̂ ^V  sec.)  the  speed  increases  by  -06  fi  per  sec,  so  the  acceleration 
is  -06  X  40  or  2-4  ft.  per  sec.  per  sec.  If  the  rider  himself  weighs  11  stone, 
the  force  on  him  needed  to  produce  this  acceleration  is  154  x  2-4  poundals, 
or  11-5  lbs.  wt. 

Hence  the  bicycle  thrusts  him  forward  ten  times  a  second  with  a  force  of 
about  11  lbs.  wt.  This  would  be  intolerable,  but  as  a  matter  of  practice  the 
blows  are  softened  by  springs,  and  his  own  speed  consequently  keeps  much 
more  constant.  However,  as  he  supplies  part  of  the  inertia  of  the  combined 

bicycle  and  rider,  he  cannot  avoid  shocks  if  this  inertia  is  to  be  the  store- 
house of  energy  ;  he  is  more  comfortable  if  a  flywheel  is  fitted  to  the  engine 

to  serve  as  a  storehouse. 

73.  FljTWheels.  In  the  case  of  stationary  engines  driving 

machinery  there  may  be  no  large  mass  moving  at  a  high  speed,  as 

with  trains  or  paddle  steamers  or  bicycles,  which  can  store  energy 

to  provide  for  the  times  when  the  engine  is  not  doing  effective 

work.  For  this  purpose,  a  massive  flywheel  is  fitted  to  the  shaft  < 

of  the  engine ;  when  this  is  rotating  at  high  speed  it  contains  a 

large  amount  of  kinetic  energy. 

A  form  of  flywheel  that  is  theoretically  the  simplest  consists 

of  a  single  circular  ring  supported  on  an  axle  by  light  spokes, 

like  a  bicycle  wheel  with  a  solid  tyre  made  of  cast  iron  or  lead. 

If  we  can  assume  that  the  cross- section  of  this  tyre  is  so  small 

that  we  can  regard  it  as  a  thin  wire  lying  along  the  mean  cir- 
cumference of  the  rim,  and  if  we  know  the  diameter  and  weight 

and  rate  of  revolution  of  the  wheel,  we  can  easily  calculate 

the  kinetic  energy  it  contains.  Suppose  for  example  that  the 
radius  is  14  inches  and  that  it  makes  10  revolutions  a  second 

and  that  the  rim  weighs  100  lbs.  Then  every  point  of  the  rim 

moves  through  the  length  of  the  circumference  (i.e.  27r  x  14  inches 

or  7*33  ft.)  in  one-tenth  of  a  second;  so  its  speed  is  7*33  x  10  ft. 

per  sec,  or  73*3  ft.  per  sec.  Hence  we  have  a  mass  of  100  lbs. 

moving  at  a  speed  of  73*3  ft.  per  sec. ;  so  its  kinetic  energy  is 

I  X  100  X  73-32  ft.-poundals  or  268,600  ft.-poundals. 
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In  the  more  general  case,  if  the  mass  of  the  rim  is  m  lbs.,  and 

its  radius  is  rft.,  and  the  wheel  makes  n  revolutions  per  second, 

a  point  on  the  rim  moves  n  x  27rr  ft.  in  a  second,  so  its  kinetic 

energy  is  ̂ mn^iir^r'^  ft.-poundals. 
In  practice,  flywheels  are  not  made  in  this  simple  form,  but 

it  is  always  possible  to  determine,  either  by  calculation  or  experi- 
ment, the  radius  of  the  equivalent  simple  flywheel  which  has  the 

same  total  mass,  and  which  contains  the  same  kinetic  energy 
when  it  revolves  at  the  same  number  of  revolutions  a  minute. 

For  example,  suppose  that  the  flywheel  is  a  circular  disc  like  a 

grindstone ;  when  it  revolves,  the  parts  near  the  axle  are  moving 

slowly,  and  those  on  the  outer  edge  are  moving  rapidly,  so  that 

a  pound  of  the  material  has  a  difl'erent  kinetic  energy  according 
to  its  distance  from  the  axle.  But  there  must  be  an  average 

radius  at  which  all  the  material  might  be  collected  and  yet  have 

the  same  total  kinetic  energy,  the  decrease  of  speed  of  the  parts 

moved  nearer  to  the  axle  balancing  the  increase  of  speed  of  those 
moved  further  from  the  axle. 

As  an  illustration  of  this,  consider 
two  hoops  of  circumference  3  and  6  ft. 
respectively,  made  of  iron  rod  which 
weighs  2  lbs.  to  the  foot ;  the  spokes 
are  supposed  to  be  so  light  that  we 
can  neglect  their  kinetic  energy.  If 
the  wheel  turns  n  times  a  second,  the 

speeds  of  a  point  on  the  hoops  are  '6n 
and  6n  ft.  per  sec.  respectively.  The 
masses  are  3  x  2  and  6x2  lbs.,  so  the 
total  kinetic  energy  of  the  wheel  is 

I  X  6  X  (37i)2  +  1  X  12  X  (6w)2  ft.-poun- 
dals. The  "equivalent  simple  fly- 

wheel" must  have  the  same  mass 
(18  lbs.)  and  its  radius  [R  ft.)  must 
be  such  that  it  has  the  same  kinetic 
energy  when  it  turns  at  the  same 

speed  (n  per  sec).     Its  circumference  „. 

will  be  27ri2  ft. ;  hence  the  speed  of  a  ig-  •    • 
point  on   it  will  be  2TrR  x  n  ft.  per  sec. ;    so  its   kinetic   energy  will  be 
^  X  18  X  {2irRjif  ft.-poundals. 

9—2 

flywheel  formed,  as  in  Fig.  53,  of 

n  turns  per  sc 

  ^*   
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Hence  i  x  18  x  ̂ irmhi^ = ^  x  6  x  Gn^  +  ̂   12  x  36n2. 
.-.   E=-827ft. 

Note  that  this  gives  a  circumference  of  5  "195  ft,  (shown  dotted  in  Fig. 
53),  which  is  intermediate  between  the  lengths  of  the  two  hoops,  but  not  the 
mean  of  the  two ;  also  that  the  simple  flywheel  is  equivalent  to  the  other 
for  all  speeds,  since  n  disappeared  from  the  equation  for  finding  the  radius. 

74.  Radius  of  Gyration.  A  special  name  is  given  to 

the  radius  of  this  equivalent  simple  flywheel ;  it  is  called  the 

Radius  of  Gyration  of  the  flywheel.  It  may  be  defined  as  follows : 

"the  radius  of  gyration  of  a  flywheel  is  the  distance  from  the 
axle  at  which  the  whole  mass  must  be  collected  to  form  a  simple 

flywheel  having  the  same  kinetic  energy  when  making  the  same 

number  of  revolutions  per  second." 
The  value  of  the  radius  of  gyration  of  a  given  flywheel  can  be 

calculated  mathematically  in  some  cases,  or  can  be  determined  by 

experiment,  as  will  be  shown  presently.  When  the  mass  also  is 
known,  the  kinetic  energy  for  a  given  speed  of  rotation  can  readily 
be  calculated. 

Ex.  27.  A  flywheel  has  a  mass  of  5  tons  and  a  radius  of  gyration  of  3  ft. 
Calculate  its  kinetic  energy  when  turning  at  80  revs,  per  min. 

The  speed  of  a  mass  collected  at  the  end  of  the  radius  of  gyration  is 

27r  X  3  X  80  ft.  per  min.  or  25*13  ft.  per  sec.  Hence  the  kinetic  energy  is 

^  X  5  x  2240  X  25-132  ft.-poundals. 
Ex.  28.  A  flywheel  has  a  mass  of  12  lbs.  and  a  radius  of  gyration  of 

4  inches.     Calculate  its  kinetic  energy  when  turning  1200  revs,  per  minute. 

Disc  flywheel.  If  the  flywheel  consists  of  a  uniformly 

thick  circular  disc  like  a  grindstone,  it  can  be  shown  that  there 

is  a  very  simple  connection  between  its  radius  of  gyration  and  the 
radius  of  the  disc  ;  if  r  be  the  radius  of  the  disc,  the  radius  of 

r 

gyration  is  "7^ .     Integral  calculus  is  needed  to  prove  that  this 

result  is  exactly  true,  but  it  can  be  verified  roughly  by  imagining 

the  disc  cut  into  a  series  of  rings  and  calculating  their  kinetic 

energies  as  was  done  for  the  two  hoops  in  Art.  73. 
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For  example,  take  a  disc  flywheel  of  diameter  2  ft. ;  imagine  a  series  of 
concentric  circles,  2  ins.  apart,  to  be  drawn  on  the  face,  dividing  it  into 
6  rings.  Call  the  thickness  of  the  disc  d  ins.,  its  speed  n  revolutions  a 
second  and  let  1  cub.  in.  of  the  material  weigh  m  lbs.  These  values  do  not 

affect  the  radius  of  gyration,  but  will  be  used  in  finding  it.  The  mean  radius 
of  the  rings  will  be  11,  9,  7,  ...  1  in. ;  so  the  mean  speeds  of  a  point  on  each 
will  be  27rn  .  11,  27rw.9,  etc.  ins.  per  sec;  the  area  of  the  largest  will  be 

TT .  122  -  TT .  102  or  447r  sq.  ins. ;  the  area  of  the  next,  tt  .  10^  -  tt  .  8^  or  SGtt  sq. 
ins.;  and  so  on.  Hence  the  volume  of  the  largest  will  be  447rd  cub.  ins.,  and 
its  mass  Wirdm  lbs.,  and  so  on.     Hence  the  kinetic  energy  of  the  largest  will 

be,  approximately,  \  x  447rdm  I  — ^ —  )  ft.-poundals,or  ̂   dmv?  x  44  x  11^ ; 

the  kinetic  energy  of  the  next  will  be  —  dmyi^  x  36  x  9-;  and  so  on. 

72 Hence  the  total  kinetic  energy  will  be  approximately 

^dm7i2  (44x112 +  36x92+      \ 

72 

4ir3 

or  —  dmn2(113  +  93+  ...). 

The  whole  volume  of  the  wheel  is  tt  x  122^  cub.  ins.,  so  its  mass  is 

TT  .  Vl^dm  lbs.  If  we  denote  the  radius  of  gyration  by  B,  ft.,  the  speed  of  this 
mass  collected  at  a  distance  B  ft.  from  the  axle  will  be  lirJin  ft.  per  sec. 

So  the  kinetic  energy  of  the  wheel  is  |  x  tt  .  122dm  (27riJn)2  ft.-poundals. 

Hence  \-k  .  VlHm .  i-n-m'^n^  =  ̂  .  dinn^  (11=^  +  9^  +  . . . ) 
18 

or  E2=-493   and  JR=-702ft. 

1 

Now  the  formula  gives  —j^  ft.  for  R,  which  is  -707  ft.,  so  the  approxi- 

mation is  within  1  ̂[^ . 

Ex.  29.  Find  the  radius  of  gyration  of  a  disc  flywheel  made  of  cast 

iron  weighing  -26  lb.  to  the  cubic  inch,  the  diameter  being  9  ins.  and  the 
thickness  2  ins. 

Ex.  30.  Find  the  energy  stored  in  the  above  flywheel  when  turning  at 
1000  revs,  per  min. 

Ex.  31.  Find  the  energy  stored  in  a  grindstone  of  diameter  4  ft.,  5  ins. 
thick,  made  of  stone  weighing  160  lbs.  to  the  cub.  ft.,  and  turning  at  30  revs. 
per  min. 
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75.  Measurement  of  radius  of  gyration  by  experi- 
ment.  The  flywheel  should  be  mounted  to  turn  freely  on  a 

horizontal  axle ;  we  will  first  suppose  that  the  bearing  friction 

is  so  sniall  that  it  may  be  neglected.  A  weight  is  hung  from  a 
cord  which  is  coiled  round  the  axle,  a  loop  on  the  end  of  the 

cord  being  put  over  a  peg  in  the  axle  so  that  when  the  cord  is 
uncoiled  the  weight  is  released.  The 

weight  is  allowed  to  pull  the  flywheel 
round  for  a  measured  drop,  and  the 

speed  of  the  flywheel,  in  turns  per 
sec,  is  then  measured.  If  we  now 
measure  the  diameter  of  the  axle  we 

can  calculate  the  speed,  and  hence 

the  kinetic  energy,  of  the  weight. 
The  loss  of  potential  energy  of  the 

weight  can  be  calculated,  and  hence 

the  energy  given  to  the  flywheel. 
From  this,  and  the  knowli  speed  of 

rotation  and  mass  of  the  flywheel  we 

can  deduce  its  radius  of  gyration. 

For  example,  a  weight  of  4  lbs.  hangs 

by  a  cord  coiled  round  the  axle 

(whose  diameter  is  2  ins.) ;  it  starts  from  rest  and  is  released 

when  it  has  fallen  2  ft.  The  flywheel  is  then  found  to  be  re- 
volving at  5  revs,  per  sec.  The  mass  of  the  flywheel  is  known  to 

be  3  lbs. 

A  point  on  the  axle,  at  the  instant  when  the  weight  is  re- 
leased, moves  through  tt  x  2  inches  in  \  sec.  ;  so  the  speed  of  the 

weight  is  then  — z^ —  ft.  per  sec.  or  2*62  ft.  per  sec. 

Fig.  54. 

12 
Hence 

its  kinetic  energy  is  |-  x  4  x  2-622  ̂ ^  13-7  ft.-poundals.  The  loss 
of  potential  energy  of  the  weight  is  4  x  32-2  x  2  ft.-poundals,  or 
257-6  ft.-poundals ;  hence  the  energy  given  to  the  flywheel  is 
257-6-13-7    or    243-9  ft.-poundals.      If   R  it.  be   its   radius   of 
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gyration,  the  speed  of  the  3  lb.  mass  collected  there  would  be 

277 R  X  5  ft.  per  sec,  so  its  kinetic  energy  would  be  ̂   x  3  x  (IOtt^)'-. 
Hence  to  find  R  we  have  the  equation 

ISOtt^T^^^  243-9, 

whence  R  —  "406  ft.  or  4-87  inches. 

If  the  friction  is  large  enough  to  make  it  necessary  to  allow 
for  its  effects,  it  can  be  done  as  follows.  Suppose  that  a  weight 

of  '4  lb.  hung  by  a  cord  coiled  round  the  axle  is  found  to  be  just 
sufficient  to  keep  the  flywheel  turning  at  a  steady  rate.  Then 
during  the  2  ft.  drop  of  the  4  lb.  weight  work  to  the  extent  of 

•4  X  32*2  X  2  ft.-poundals  is  spent  in  overcoming  friction,  and  this 

amount  must  be  subtracted  from  the  energy  (243*9  ft.-poundals) 
which  we  calculated  was  transferred  to  the  flywheel.  The 

calculation  of  the  radius  of  gyration  then  proceeds  as  before. 

Ex.  32.  A  flywheel  weighs  3  tons;  its  axle  has  a  diameter  of  5  inches. 
It  is  found  that  a  weight  of  90  lbs.  hung  by  a  cord  coiled  round  the  axle  just 
keeps  it  turning  at  a  steady  rate.  If  a  weight  of  5  cwt.  is  hung  by  the  cord 
and  released  after  it  has  descended  8  ft.,  the  flywheel  is  observed  to  turn  at 
the  rate  of  one  revolution  in  3  sees.     Find  its  radius  of  gyration. 

76.  Fluctuation  of  speed  of  an  eng^ine.  Consider 

the  case  of  a  gas  engine  driving  a  dynamo,  which  requires 
100  H.P.,  at  an  average  of  300  revs,  per  min.  Suppose  that  the 

gas  engine  supi)lies  energy  at  a  uniform  rate  during  one  stroke, 
and  supplies  none  during  the  next  (there  being  two  strokes  to 
each  revolution);  and  suppose  it  is  required  that  the  speed  should 
not  rise  above  305,  nor  fall  below  295,  revolutions  a  minute. 

How  large  must  the  flywheel  be  to  keep  the  speed  within  these 

limits  1  The  dynamo  requires  100  x  33,000  or  3,300,000  ft.-lbs.  in 
a  minute,  i.e.  in  300  revolutions;  so  it  requires  11,000 ft.-lbs.  in 

one  revolution  or  5500  ft.-lbs.  during  one  stroke.  Hence  during 
a  working  stroke  the  engine  must  produce  11,000  ft.-lbs.  of 
energy,  half  of  which  is  taken  by  the  dynamo  during  the 
stroke,  the  other  half  being  stored  in  the  flywheel.  Therefore 

during  the  working  stroke  the  flywheel  absorbs  5500  ft.-lbs.  or 
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5500  X  32'2  ft.-poundals,   and   its   speed  increases  from   295   to 
305  revs,  per  min.  ;    during  the  next   stroke  it   gives  out  this 

energy  and  its  speed  drops  again  to  295  revs,  per  min. 
If  its  mass  is  Jflbs.  and  its  radius^  of  gyration  is  Rit.,  its 

kinetic  energy  at  305  revs,  per  min.  (or  ̂ ^^  revs,  per  sec.)  will 

3052 

as   before 
  
he   \M  x  iir^E^  .  -— —  ft.-poun

dals.   
  
And  its  kinetic

 

2952 

energy 
 
at   295  revs,  per   min.   is  ̂ M  x  47r^-ff^  ̂ ^^  ft.-poun

dals. 

The  difference  between  these  two  is^Mx  i-jt''  — -  (305^  -  295^)  ft.- 

poundals. 

Hence         277^  ̂   (305^  -  295^)  =  5500  x  32-2. 

Or  i//?2  =  5381  ft.-lb.  units. 

If  we  decide  that  5  cwt.  would  be  a  convenient  weight  for 

the  flywheel,  then  R^  =  ̂      ..^  and  i?  =  3-lft. 0  X  1 U 

Miscellaneous  Exercises. 

Ex.  1.  In  a  boiler  and  engine  which  delivers  100  brake  horse  power,  it 
is  found  that  10  per  cent,  of  the  heat  generated  by  combustion  of  the  coal 
is  converted  into  mechanical  energy.  Each  pound  of  coal  burnt  generates 

14,800  B.T.U.;  Joule's  equivalent  may  be  taken  as  778.  Calculate  (i)  the 
mechanical  energy  produced  for  each  pound  of  coal;  (ii)  the  number  of 

ft. -lbs.  of  work  done  by  the  engine  in  an  hour ;  and  hence  (iii)  the  number 
of  lbs.  of  coal  burnt  per  hour. 

Ex.  2.  A  steel  shell  travelling  at  2000  ft.  per  sec.  is  suddenly  stopped ; 

calculate  its  rise  in  temperature,  if  its  specific  heat  is  -1,  and  if  all  the  heat 
generated  is  retained  in  the  shell. 

Ex.  3.  A  three  ton  truck  runs  down  a  slope  of  1  in  20  and  gains  a 
speed  of  37  ft.  per  sec.  in  500  ft.  Find  the  retarding  force  of  friction. 
What  would  have  been  its  speed  if  there  had  been  no  friction? 
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Ex.  4.  A  shaft,  4  inches  diameter,  supported  in  two  bearings,  makes 
80  revs,  a  min.  The  weight  of  the  shaft  and  load  on  it  amount  to  4  tons, 

and  the  coefficient  of  friction  is  -06.    Find  the  h.p.  absorbed  in  the  bearings. 

Ex.  5.     In  Ex.  4,  if  all  the  heat  produced  in  the  bearings  is  carried 
away  by  a  stream  of    water   flowing  at    18  gallons   per  hour,    find   the 

temperature  of  the  outflowing  water,  the  supply  being  at  50°  F. 
[1  B,TH.u.  =  778  ft.-lbs. ;  1  gallon  of  water  weighs  10  lbs.] 

Ex.  6.  Why  is  a  bearing  for  a  shaft  always  designed  for  as  small  a 
diameter  as  is  consistent  with  adequate  strength? 

Ex.  7.  In  a  test  of  a  small  engine '70  lbs.  were  loaded  on  one  side  of 
the  flywheel  brake,  and  the  other  side  was  attached  to  a  spring  balance 
reading  11  lbs.  The  speed  of  the  engine  was  200  revs,  per  min.,  and  the 
brake  wheel  was  5  ft.  diameter.  Calculate  the  heat  generated  at  the  brake 
in  10  mins. 

Ex.  8.  A  truck  of  mass  3  tons  is  running  free  down  a  slight  incline 
with  a  uniform  speed  of  15  miles  an  hour,  when  the  brake  is  put  on.  The 
brake  consists  of  a  wooden  block  pressed  on  the  iron  rim  of  one  wheel. 
Find  what  pressure  must  be  applied  to  the  block  to  bring  the  truck  to  rest 

in  40  yds.,  the  coefficient  of  friction  for  the  wood  on  iron  being  -3,  and  less 
than  the  coefficient  of  friction  between  the  wheels  and  rails. 

Ex.  9.     A  ship  of  2000  tons  moving  at  3  knots  is  stopped  in  152  ft. 
Find  the  retarding  force,  assuming  it  to  be  constant. 

[1  knot  =  6080  ft.  per  hour.] 

Ex.  lO.  The  ram  of  a  pile  driver  weighs  200  tons  and  falls  12  ft.  on 
the  head  of  a  pile,  which  yields  half  an  inch.  Find  the  loss  of  potential 
energy  of  the  ram,  and  assuming  that  it  all  goes  in  overcoming  the  resistance 
of  the  pile,  find  the  steady  weight  which  the  latter  could  support. 

Ex.  11.  A  battleship  is  steaming  at  the  rate  of  25  miles  an  hour  and 
her  engines  are  developing  30,000  horse  power  at  the  propeller.  What  is 
the  resistance  to  her  motion  through  the  water  ?  In  what  distance  would 
she  lose  all  her  way  if  retarded  with  this  force,  assuming  that  her  mass  is 
15,000  tons? 

Ex.  12.  A  chain  will  be  stretched  across  the  locks  in  the  Panama 

Canal,  70  ft.  from  the  end  of  the  lock ;  this  chain  opposes  a  resistance  to  a 
ship  which  strikes  it,  and  so  brings  it  to  rest  before  reaching  the  end  gate. 
If  this  brake  is  sufficient  for  a  10,000  ton  ship  reaching  the  chain  at  a  speed 
of  4  miles  an  hour,  at  what  speed  may  a  30,000  ton  ship  safely  reach  the 
chain?     (The  friction  of  the  water  may  be  neglected  at  these  speeds.) 
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Ex.  13.  A  collier  is  being  towed  by  means  of  a  hawser,  the  tension  in 

the  hawser  being  10  tons  and  the  speed  3-5  knots  (1  knot  =  6080  ft.  per  hour). 
What  H.p.  is  being  spent  in  towing  the  collier? 

Ex.  14.  In  measuring  Joule's  equivalent,  the  number  of  revolutions 
was  2725 ;  the  rise  of  temperature  5-33°  C. ;  the  water  had  an  effective  mass 
of  270  grms. ;  diameter  of  drum  24  cm. ;  difference  between  the  tensions  on 
the  two  sides  of  the  brake  was  300  grms.  weight.  Find  these  quantities  in 
British  units. 

Find  the  b.th.u.'s  developed,  the  work  expended  in  ft.-lbs.,  and  the 
equivalent  of  1  b.th.u.  in  ft.-lbs. 

Ex.  15.  A  gun  is  fired  at  an  elevation  of  30°,  and  is  found  to  have  a 
range  of  11,500  yds.  Neglecting  the  resistance  of  the  air,  calculate  the 
muzzle  velocity.  If  the  mass  of  the  projectile  is  700  lbs.,  find  its  kinetic 
energy  when  at  its  highest  point. 

Ex.  16.  A  swing  is  pulled  from  its  lowest  position  till  the  ropes,  which 

are  10  ft.  long,  make  an  angle  of  40°  with  the  vertical,  and  then  let  go. 
Calculate  its  speed  as  it  passes  through  its  lowest  point.  If  the  boy  on  it 
weighs  120  lbs.,  what  constant  force  must  be  exerted  on  him  to  stop  him  in 
2  ft.  after  passing  this  point  (neglecting  the  rise  in  this  distance). 

Ex.  17.  A  bicyclist  propels  his  machine  at  10  miles  an  hour  against  a 
road  resistance  of  4  lbs.  wt.  His  pedal-crank  is  7  ins.  long,  the  number  of 
teeth  on  the  crank  axle  chain  wheel  is  45  and  on  the  hub  chain  wheel  is  18, 

and  the  diameter  of  the  back  wheel  is  28  inches.  Calculate  (i)  the  distance 
moved  by  the  bicycle  for  one  revolution  of  the  crank  axle,  (ii)  the  work  done 
against  the  road  resistance  in  this  distance,  and  hence  (iii)  the  average  force 
perpendicular  to  the  crank  which  the  rider  must  exert. 

Ex.  18.  A  flywheel  has  300,000  ft.  lbs.  of  k.e.  stored  in  it  when  rotating 
at  100  revs,  per  min. ;  how  much  work  will  be  done  by  it  in  slowing  down  to 
98  revs,  per  min.  ? 

Ex.  19.  A  flywheel  whose  mass  is  60  lbs.  is  mounted  on  a  horizontal 
axle  of  diameter  1|  ins.,  round  which  a  string  is  coiled  and  attached  to  a 
weight  of  4  lbs.  If  the  weight  falls  30  ins.  in  10  sees,  from  rest,  find  the 
radius  of  gyration  of  the  flywheel. 

Ex.  20.  A  hollow  drum,  6  ft.  in  diameter,  and  mass  5  cwt.,  has  a 
radius  of  gyration  of  2  ft.  It  is  employed  to  wind  a  load  of  500  lbs.  up  a 
vertical  shaft,  and  is  rotating  at  120  revs,  per  min.  How  far  below  the 
ground  level  should  the  load  be  when  the  steam  is  shut  off,  so  that  the 
kinetic  energy  of  load  and  drum  should  just  suffice  to  carry  the  former  to 
the  surface? 
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Ex.  21.  A  flywheel  weighing  5  tons  has  a  radius  of  gyration  of  5  ft.; 
it  is  carried  on  a  shaft  of  12  ins.  diameter  and  is  running  at  75  revs,  per  min. 

If  the  coefficient  of  friction  of  the  shaft  in  its  bearings  is  -07,  how  many 
revolutions  will  the  flywheel  make  before  it  is  stopped  by  friction  ? 

Ex.  22.  A  lift  of  mass  300  lbs.  is  started  from  rest  by  a  constant  force 
and  acquires  an  upward  speed  of  20  ft.  per  sec.  in  3  sees.  What  is  then  its 
kinetic  energy  ?     What  is  the  total  work  done  on  the  lift  in  these  3  sees.  ? 

Ex.  23.  A  car  on  a  switch-back  railway  is  started  from  a  height  of 
40  ft.  above  the  ground.  It  goes  down  into  a  dip  and  reaches  the  top  of  the 
next  rise,  30  ft.  above  the  ground,  with  a  speed  of  8  ft.  per  sec. ;  the  distance 
along  the  rails  between  the  crest  of  this  rise  and  the  starting  point  is  38  yds. 
Calculate  the  force  of  friction  (supposed  constant)  which  opposes  the  motion 
of  the  car,  the  mass  of  the  car  and  passengers  being  2000  lbs. 

If  the  total  length  of  the  rails  is  130  yds.,  and  the  car  is  required  to  come 
to  rest  at  the  end,  what  must  be  the  height  above  the  ground  of  the  flnishing 

point  ? 

Ex.  24.  A  flywheel,  whose  diameter  is  7  ft.,  mass  4  tons  and  radius 

of  gyration  3  ft.,  is  making  90  revs,  per  min.  Calculate  how  many  ft. -lbs. 
of  work  it  will  do  in  coming  to  rest.  What  force  acting  along  its  circum- 

ference would  be  required  to  stop  the  wheel  in  10  revolutions  ? 

Ex.  25.  A  flywheel  has  a  mass  of  5  cwt.  and  gives  up  1800  ft.-lbs.  of 
energy  while  its  speed  drops  from  140  to  133  revs,  per  min.  What  is  its 
radius  of  gyration  ? 

Ex.  26.  A  body  of  mass  20  lbs.  is  projected  with  a  velocity  of  80  ft. 

per  sec.  at  an  elevation  of  50°.  Calculate  the  potential  and  kinetic  energy 
of  the  body  after  a  second. 

Ex.  27.  Two  wheels,  each  of  mass  30  lbs.  and  each  mounted  on  a 

3  inch  axle,  have  10  lb.  weights  attached  to  cords  round  the  axles  at  heights 
of  10  ft.  above  the  ground.  The  weight  attached  to  one  reaches  the  ground 
in  20  sees,  from  rest,  that  attached  to  the  other  in  40  sees,  from  rest. 
Compare  the  radii  of  gyration  of  the  two  wheels,  neglecting  the  k.  e.  of  the 
weight  in  each  case. 

Ex.  28.  A  railway  coach,  mass  5  tons,  is  slipped  from  a  train  travelling 
at  30  miles  an  hour  and  comes  to  rest  in  400  yds.  Determine  the  original 
kinetic  energy  of  the  coach,  and  the  force  (assumed  constant)  which  brings 
it  to  rest. 

Ex.  29.  A  flywheel  has  a  mass  of  4  cwt.  and  a  radius  of  gyration  of 
3  ft.  Calculate  the  energy  stored  in  it  when  making  240  revs,  per  min. 

What  will  be  its  speed  when  it  has  given  up  25 "/q  of  this  energy? 
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Ex.  30.  Water  enters  a  pipe-line  whose  area  of  cross-section  is  10  sq.  ft. 
at  a  speed  of  70  ft.  per  min.  It  flows  down  to  a  turbine  50  ft.  below,  and 
emerges  from  it  at  a  speed  of  20  ft.  per  min.  Calculate  the  loss  of  energy, 
kinetic  and  potential,  per  lb.  of  water.  If  80  7o  of  this  is  utilised  by  the 

turbine,  calculate  its  horse-power.     (1  cub.  ft.  *of  water  weighs  62*4  lbs.) 
Ex.  31.  A  man  works  a  treadle  lathe  and  drives  the  flywheel  at  a  speed 

which  fluctuates  because  the  man  does  work  with  his  foot  during  one  half 

only  of  each  revolution  of  the  flywheel ;  the  average  rate  at  which  he  works 
is  one-tenth  of  a  horse-power.  Assuming  that  the  lathe  absorbs  energy  at 
a  uniform  rate  throughout,  and  that  the  man  supplies  it  at  a  uniform  rate 
during  one  half  of  each  revolution  and  none  during  the  other  half,  calculate 
the  necessary  radius  of  gyration  of  the  flywheel  (whose  mass  is  160  lbs.)  in 

order  that  its  speed  may  vary  between  105  and  95  revs,  per  min.  The  effect 

of  parts  of  the  lathe  other  than  the  flywheel  in  keeping  the  speed  uniform 
may  be  neglected. 

Ex.  32.  The  travelling  table  of  a  planing  machine  has  a  mass  of 
35  cwts.,  and  during  the  cutting  stroke  it  moves  at  a  speed  of  21  ft.  per  min. ; 
it  is  driven  by  gearing  from  a  shaft  carrying  two  pulleys,  of  diameter  12  ins, 
and  21  ins.  and  masses  6  lbs.  and  12  lbs.  respectively ;  these  masses  may  be 
considered  as  being  concentrated  on  the  rims.  During  the  cutting  stroke 
this  shaft  turns  at  248  revs,  per  min.  Calculate  the  kinetic  energy  stored 

in  (1)  the  table,  (2)  the  pulleys.  If  the  coefficient  of  friction  between  the 

table  and  the  bed  on  which  it  slides  is  -1,  calculate  the  distance  which  the 
table  will  run  after  the  driving  belt  has  been  thrown  off  the  pulley,  and  the 
time  occupied  in  stopping. 

Ex.  33.  In  the  planing  machine  of  Ex.  32,  26^0  of  the  power  exerted 
by  the  driving  motor  reaches  the  table  ;  calculate  the  h.p.  of  the  motor 
needed  to  drive  the  table  against  frictional  resistance  when  no  cut  is  being 

made.  When  a  cut  is  being  made  in  cast  iron  ̂ in.  deep,  it  is  observed  that 

the  H.p.  exerted  by  the  motor  is  2*04  ;  calculate  the  resistance  opposed  to 
the  cutting  tool,  if  the  object  being  planed  weighs  5  cwt. 
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MOMENTUM 

77.  Action  and  Reaction;  Newton^s  Third  Law 
of  Motion.  Hitherto  we  have  considered  the  effect  of  a  force 

on  a  body,  without  troubling  ourselves  about  the  manner  in 
which  the  force  is  produced.  But  that  force  must  be  exerted 

by  some  other  body,  and  we  will  now  consider  how  this  body  is 

affected.  One  body  can  exert  a  force  on  another  by  pushing 

directly  against  it,  or  by  pulling  it  by  a  rope,  or  by  means  of 

"action  at  a  distance"  such  as  the  attraction  of  gravitation  or 
electric  or  magnetic  attraction.  In  all  these  cases  the  body 

which  exerts  the  force  is  itself  affected  by  it;  for  example  if  a 
heavy  body  lies  on  the  table,  it  presses  the  table  down  and  the 

table  presses  the  body  up  and  so  supports  it. 
When  the  two  bodies  are  at  rest  it  may  be  taken  as  obvious 

that  the  "action"  of  the  first  on  the  second  is  equal  to  the 
"  reaction '.'  of  the  second  on  the  first ;  this  is  assumed  in  every 
problem  in  Statics.  It  may  not  be  so  obvious  when  the  bodies 

are  moving  under  the  action  of  the  forces  they  exert  on  one 
another. 

When  dealing  with  the  action  between  two  bodies  which  are 
changing  their  speeds,  it  is  convenient  to  have  a  definite  case  to 
think  about.     The  following  experiment  will  serve  this  purpose. 

Fig.  55. 



142  Chapter  VII 

A  and  B  (Fig.  55)  are  two  trolleys  on  a  plane.  To  A  is  fixed 
one  end  of  a  spiral  spring,  C,  the  other  end  of  which  is  attached 

to  -5  by  a  long  thread.  The  trolleys  are  held  apart  so  that  the 

spring  is  stretched ;  then  B  is  being  pi^lled  to  the  left  by  the 
spring,  and  at  the  same  time  A  is  being  pulled  to  the  right,  and 
these  forces  are  obviously  equal  since  A  and  B  and  the  spring  are 

at  rest.  If  we  look  on  the  spring  as  being  part  of  A,  we  may 

regard  the  two  bodies  as  exerting  a  force  on  each  other.  They 
are  simultaneously  let  go ;  while  the  spring  is  recovering  its 

original  unstretched  length,  A  and  B  move  towards  one  another, 
with  increasing  speeds ;  so  each  must  continue  to  exert  some 

force  on  the  other  during  the  motion,  until  the  spring  has  re- 
covered its  original  length. 

Newton  asserted  that  A  exerts  on  J5  a  force  equal  at  every 
instant  to  that  which  B  is  then  exerting  on  A.  He  put  it  more 

generally  in  his  Third  Law  of  Motion.  "To  every  action 
there  is  an  equal  and  opposite  reaction^  or^  the  mutual 
actions  between  any  two  bodies  are  always  equal  and 

opposite.'^  This  need  not  be  proved  experimentally  in  the  same 
way  as  the  Second  Law ;  it  is  a  generalisation  of  our  everyday 
experiences,  and  is  a  consequence  of  the  meaning  which  we  give 

to  the  words  force,  action  and  reaction.  A  few  instances  may 
make  it  clearer.  A  rifle  bullet  can  exert  no  force  until  it  meets 

with  an  obstacle  to  its  further  progress ;  you  cannot  drive  a  nail 
into  a  board  unless  it  is  supported  so  that  it  cannot  yield,  for  the 
hammer  cannot  exert  a  pressure  unless  the  board  opposes  the 
intrusion  of  the  nail.  A  multitude  of  instances  such  as  these 

make  it  clear  that  "to  every  action  there  is  an  opposite  re- 

action," but  it  is  not  so  obvious  that  the  reaction  is  always  equal 
to  the  action.  In  fact,  it  may  look  at  first  sight  as  though,  if 

this  were  so,  no  body  would  ever  succeed  in  making  another 

move  at  all.  Newton  put  this  difficulty  clearly  by  quoting  the 
case  of  a  cart  and  horse ;  according  to  his  third  law,  the  cart 

pulls  the  horse  backwards  as  hard  as  the  horse  pulls  the  cart 

forwards,  and  yet  the  horse  succeeds  in  making  the  cart  move 
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forward,  and  the  cart  does  not   succeed  in  making  the  horse 
move  backward. 

78.  To  clear  up  this  apparent  paradox  we  have  only  to  do 

what  is  very  advisable  in  all  problems  of  dynamics ;  first  be  clear 
as  to  what  body  or  collection  of  bodies  we  are  thinking  about 

and  then  reckon  up  all  the  forces  which  are  acting  on  that  body 
or  collection  of  bodies,  from  outside.  Applying  the  Third  Law 
in  the  case  of  each  of  these  forces,  we  can  show  that  both  cart 

and  horse  may  move  forwards. 
Consider  iirst  the  cart,  and  suppose  that  it  is  on  a  level  road. 

The  forces  on  it  from  outside  are,  if  it  is  moving  forwards, 

(1)  the  vertically  downward  attraction  of  the  earth  on  it, 

(2)  the  vertically  upward  pressure  of  the  ground  on  the 
wheels, 

(3)  the  horizontal  pull  of  the  traces,  forwards, 

(4)  certain  frictional  resistances,  acting  horizontally  back- 
wards, by  the  ground  on  the  wheels.  For  simplicity  we  can 

think  of  these  as  equivalent  to  a  direct  pull  backwards  by  a 
rope. 

Forces  (1)  and  (2)  must  be  equal,  or  the  cart  would  rise  into 

the  air  or  sink  into  the  ground  with  an  acceleration.  Forces  (3) 

and  (4)  need  not  be  equal ;  they  are  not  equal  if  the  cart  has 
an  acceleration,  for  by  the  second  law  of  motion  the  difference  of 
these  forces  is  equal  to  the  product  of  the  mass  of  the  cart  and  its 
acceleration,  and  as  we  are  assuming  that  the  cart  has  a  forward 

acceleration,  (3)  is  greater  than  (4). 
Next  consider  the  forces  acting  from  outside  on  the  horse ; 

they  are 
(5)  the  vertically  downward  attraction  of  the  earth  on  him, 

(6)  the  vertically  upward  pressure  of  the  ground  on  his 
hooves, 

(7)  the  horizontal  pull  of  the  traces,  backwards, 

(8)  certain  frictional  forces,  acting  horizontally  forwards,  by 
the  ground  on  his  hooves. 
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Forces  (5)  and  (6)  must  as  before  be  equal  to  one  another. 

Forces  (7)  and  (8)  are  not  equal  to  one  another ;  their  difference 

is  equal  to  the  product  of  the  mass  of  the  horse  and  his  accelera- 
tion, and  as  we  assume  that  the  horse  ha^  a  forward  acceleration 

(8)  must  be  greater  than  (7).  These  frictional  forces  exerted  on 
the  horse  by  the  ground  are  the  reaction  to  the  backward  force 
which  he  exerts  on  the  ground  in  his  efforts  to  move  forward ;  he 

succeeds  in  moving  forward  because  the  force  which  he  exerts  is 
greater  than  the  backward  pull  of  the  traces. 

According  to  the  Third  Law,  (3)  and  (7)  are  equal  to  one 
another;  and  it  will  be  seen  that  this  fact  does  not  interfere 

with  our  explanation  of  the  movement  of  either  the  cart  or  the 

horse,  considered  separately. 

Lastly,  consider  the  horse  and  cart  as  one  "system  of 

bodies."     The  forces  acting  on  it  from  outside  are, 
(9)  the  vertically  downward  attraction  of  the  earth  on  the  two, 

(10)  the  vertically  upward  pressures  of  the  ground  on 
wheels  and  hooves, 

(11)  the  backward  force  of  friction  by  the  ground  on  the 
wheels, 

(12)  the  forward  force  of  friction  by  the  ground  on  the 

horse's  hooves. 
As  before  (9)  and  (10)  balance  one  another.  Since  the  whole 

system  has  a  forward  acceleration,  (12)  is  greater  than  (11). 
(This  is  what  we  found  when  we  considered  the  horse  and  cart 

separately,  for  we  found  that  (8)  was  greater  than  (7),  and  (3) 
than  (4),  and  the  third  law  states  that  (7)  and  (3)  are  equal; 
hence  (8)  is  greater  than  (4).)  It  will  be  noticed  that  in  this 
case  the  pull  of  the  traces  does  not  come  into  question ;  it  is  no 

longer  a  force  from  outside,  but  a  reaction  between  two  parts  of 

the  system,  which  cannot  affect  the  motion  of  the  system  as  a 
whole  any  more  than  a  passenger  in  the  cart  could  do  by  pulling 
the  dashboard  towards  him. 

So  we  see  that  the  Third  Law  does  not  really  lead  us  into  the 
absurdity  which  at  first  sight  it  seemed  to  do. 
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79.  Atwood's  Machine.  We  will  now  work  out  numeric- 

ally a  simple  instance  of  the  application  of  the  Third  Law  of 
Motion,  in  which  two  bodies  move  under  the  attraction  of  the 
earth  and  their  reaction  on  one  another. 

Suppose  that  two  unequal  weights  A  and  B  are  hung  at  the 
ends  of  a  light  string  passing  over  a  light  pulley, 
which  moves  with  so  little  friction  in  its  bearings 

that  we  can  neglect  it.  This  arrangement  is  usually 

called  "Atwood's  Machine."  Suppose  the  mass  of 
A  to  be  400  grms.,  and  of  B  to  be  410grms. ;  it  is 
obvious  that  B  will  run  down,  and  that  A  will  run 

up.  Since  the  string  is  supposed  not  to  stretch,  the 
speed  of  A  and  B  at  any  instant  must  be  the  same, 

so  they  have  the  same  acceleration;  call  the  accelera- 
tion a  cm.  per  sec.  per  sec. 

A  is  being  pulled  upwards  by  the  string,  with  a 
force  whose  magnitude  we  do  not  yet  know ;  call  it 

T  dynes.  It  is  also  pulled  downwards  by  the  earth 
with  a  force  of  400  x  981  dynes;  these  forces  are 

shown  in  Fig.  57  (i). 
We  know  that  A  is  moving  upwards  with  an  acceleration 

a  cm.  per  sec.  per  sec. ;  the 

resultant  force  on  it  to  pro- 
duce this  acceleration  must  be 

400  X  a  dynes,  as  shown  in 
Fig.  57  (ii). 

It  will  be  found  to  be  ad- 

visable, in  all  problems  of  this 
kind,  to  isolate  in  some  such  way 
the  body  under  consideration, 

and  draw  separate  diagrams 

for  it  showing  "applied  forces" 

and  "  accelerating  force,"  in 
order  to  avoid  leaving  anything  out  of  account. 

Fig.  56. 

400)^0 

t400X981 

(i) 
Fig.  57. 

(ii) 

10 
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We  see  from  Fig.  57  (i)  that  the  upward  resultant  force  on  A 

is  5^-400  X  981  dynes;  hence 
^-400  X  981  =  400  X  a   (1). 

We  have  called  the  pull  of  the  string  on  ̂ ,  ̂   dynes;  this 

force  was  of  course  exerted  by  B  and  transmitted  by  the  string ; 

hence  by  Newton's  Third  Law,  the  reaction  of  A  on  B,  trans- 
mitted to  B  by  the  string,  is  also  T  dynes.  So  the  string  pulls  B 

upwards  with  a  force  of  T  dynes. 

Hence  Fig.  58  (i)  represents  the  diagram  showing  forces  on  B ; 

i410x981 

(i) 

V  41  Ox  a 
(ii) 

Fig.  58. 

and   Fig.  58  (ii)  represents  its  diagram  of  acceleration.     From 
these  as  before  we  see  that 

410x981-:r=410x«   (2). 

Adding  the  respective  right  and   left  sides  of  (1)   and  (2) 
together  we  get 

410  x  981  -  400  X  981  =  410a  +  400a 

or  10x981  =  810a, 

whence  a  =  12"1  cm.  per  sec.  per  sec. 

Again,  substituting  this  value  of  a  in  (1),  in  order  to  find  Ty 
we  get 

2^-400x  981  =  400  X  12-1, 

or  r  =  400x  993-1, 
=  397^200  dynes. 

It  will  be  seen  that  the  tension  of  the  string  is  intermediate 
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between  the  weights  of  A  and  B;  for  the  weight  of  A  is  400  x  981 

or  392,400,  and  of  B  is  410  x  981  or  402,300  dynes.  The  re- 
sultant force  on  A  is  397,300-392,400  or  4,900  dyne^  upwards, 

and  the  resultant  force  on  B  is  402,300  -  397,300  or  5,000  dynes 
downwards  ;  these  respective  forces  give  A  and  B  the  same  ac- 

celeration, 12-1  cm.  per  sec.  per  sec. 
Ex.  1.  Masses  of  50  and  60  grms.  are  hung  by  a  light  string  over  a  light 

pulley  ;  determine  the  resulting  acceleration  and  the  tension  of  the  string. 
Ex.  2.  Masses  of  20  and  21  lbs.  are  hung  over  a  pulley  whose  mass  and 

friction  maybe  neglected;  determine  the  acceleration,  and  the  tension  of 
the  string  in  poundals. 

80.  It  is  convenient  to  get  a  general  value  of  the  accelera- 
tion and  tension  in  the  string,  for  any  values  of  the  weights  A 

and  B.  Suppose  the  mass  of  A  is  m^  grms.  (or  lbs.)  and  of  B  is 
7?i2  grms.  (or  lbs.);  call  the  acceleration  a  cm.  per  sec.  per  sec. 

(or  ft.  per  sec.  per  sec.)  and  the  pull  in  the  string  T  dynes  (or 
poundals).  We  must  of  course  use  either  British  or  c.  G.  s.  units 
throughout.     Working  as  before,  we  have 

T  —  m^g  =  m^a   (1), 

and  7n.2g  —  T^m^a   (2), 

where  g  as  usual  means  the  acceleration  of  a  body  falling  freely, 
expressed  in  the  same  units  as  we  are  using  for  T,  etc. 

Hence  as  before 

a^—   -'  xg    3), 
7/12  +  mi     ̂   ^   ̂' 

and  T=   — -a       (4). 
m^  +  m^  ^   ■ 

These  results  (cf.  Ex.  15  of  Chap.  VI)  should  not  be  learnt 
as  formulae ;   the  same  method  of  working  should  be  followed 

with  the  numbers  given  in  any  particular  case. 
Writing  (3)  in  the  form 

(m^  +  rrij)  a  =  (m.2  —  m^)  g 
we  see  that  the  acceleration  a  is  the  same  as  would  be  produced 

by  a  force  [m^  -  m-^)  g  acting  on  a  mass  of  {m^  +  m^) ;  this  force  is 
the  difference  of  the  weights,  and  this  mass  is  the  total  mass 

10—2 
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moved ;  so  the  acceleration  can  be  determined  at  once  by  con 

sidering  the  system  as  a  whole,  and  taking  the  acting  force  as 

the  diflference  of  the  weights  and  the  total  mass  as  the  body  on 

which  this  force  acts.  This  way  of  booking  at  it  is  obviously 
reasonable  and  convenient  for  future  use  but  it  would  not  be 

safe  to  assume  that  it  would  give  the  true  result  without  proving, 

as  we  have  done,  that  it  does  so. 

A  form  of  Atwood's  machine  which  is  convenient  for  experi- 
mental purposes  consists  of  two  masses  connected  by  a  ribbon  of 

paper,  which  passes  under  a  vibrating  spring,  as  in  a  trolley. 

The  whole  motion  is  then  recorded  on  the  paper ;  the  value  of 
the  acceleration  above  deduced  should  be  verified  if  such  a 

machine  is  available. 

Ex.  3.  Weights  of  20  and  21  lbs.  are  hung  by  a  light  string  over  a  light 
frictionless  pulley ;  calculate  the  acceleration  and  the  tension  of  the  string, 
using  the  general  principle  found  in  the  last  article. 

Ex.  4.  A  lift  weighing  8  cwt.  is  counterpoised  by  an  equal  weight,  and 
a  man  weighing  10  stone  steps  into  it  ;  if  it  runs  down  freely  determine  its 
acceleration. 

Ex.  5.     Calculate  the  speed  of  the  lift  in  Ex.  4  when  it  has  fallen  20  ft. 

Ex.  6.  Weights  of  600  and  650  grms.  are  hung  by  a  light  string  over 
a  light  frictionless  pulley ;  calculate  the  acceleration  and  the  tension  of  the 
string,  using  c.g.s.  units. 

81.     Tension  of  the  string  by  which  a  weight  pulls 

^  _  a  trolley.    As  a  further  example  we  will 

investigate  the  results  discovered  by  ex- 
periment in  Art.  13.  Suppose  the  mass 

of  the  trolley  is  6  lbs.,  and  that  we  have 

counteracted  friction  by  sloping  the  plane; 

suppose  that  the  mass  of  the  acting  weight 

is  -5  lb.  If  we  call  the  tension  of  the 

string  T  poundals,  and  the  acceleration 

gx  g  .5.,  Q       a  ft.  per  sec.  per  sec,  the  diagrams  show- 
ing force  and  acceleration  for  the  weight 

(i)  (ii)  are  as  shown  in  Fig.  59. 

Fig.  59.  Hence       %-^=-5xa   (1). 

C 
■5 

Y 
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The   corresponding   diagrams    for   the    trolley   are   given   in 

Fig.  60,  where  the  slope  of   the  plane  is  exaggerated  in  order 

Fig.  60. (ii) 

to  show  its  effect.  Here  the  weight  of  the  trolley  balances  the 

forces  {R  and  /xi?)  exerted  by  the  plane  at  each  of  the  wheels 

(as  shown  by  dotted  lines),  leaving  as  the  resultant  force  on 
the  trolley  the  pull  of  the  string,  i.e.  T  poundals  down  the 

plane. 

Hence  T=^a       (2). 

Eliminating  a  from  (1)  and  (2)  we  have 

T  'bg-T  T 

whence  T  = -^  x  g  =  -461^  poundals. 

So  the  pull  on  the  trolley  is  less  than  the  weight  of  the  acting 

mass  (which  is  -bg  poundals)  by  -039  poundals. 
If  we  work  out  the  pull  on  a  trolley  of  mass  3  lbs.  when  the 

acting  mass  is  -5  lb.  as  before,  we  find  that  the  pull  is  y  x  gr 

or  '428g  poundals,  i.e.  the  pull  decreases  as  the  mass  of  the 
trolley  decreases,  as  we  found  in  Art.  13.  Note  that  if  the  mass 

of  the  trolley  is  reduced  to  the  vanishing  point,  there  will  be  no 
pull  in  the  string,  for  it  then  has  nothing  to  pull. 

Ex.  7.  A  trolley  stands  on  a  plane  whose  gradient  is  1  in  4  ;  the  mass 
of  the  trolley  is  2000  grms.     A  mass  of  700  grms.  hangs  on  the  end  of  a 
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string  which  passes  over  a  pulley  at  the  top  of  the  plane  and  is  attached  to 
the  trolley.     Neglecting  friction,  find  the  acceleration  produced. 

Call  the  tension  of  the  string  T  dynes,  and  the  acceleration  a  cm.  per 
sec.  per  sec. 

The  forces  on  the  trolley  parallel  to  the  plane  are  the  resolved  part  of  the 
weight  of  the  trolley  down  the  plane,  or  |  x  2000  x  981  dynes,  and  T  dynes 
upwards  ;  so  we  have 

T- ^  X  2000  X  981  =  2000  X  a   (1). 

The  forces  on  the  mass  are  its  weight  downwards,  or  700  x  981  dynes, 
and  T  dynes  upwards,  so 

700x981-r  =  700xa      (2). 

From  (1)  and  (2)  we  find  the  acceleration  is  72 '7  cm.  per  sec.  per  sec. 

Ex.  8.  A  trolley  of  mass  4  lbs.  stands  on  a  plane  whose  gradient  is 

1  in  3 ;  a  weight  of  1*5  lb.  hangs  on  the  end  of  a  string  which  passes  over 
a  pulley  on  the  top  of  the  plane  and  is  attached  to  the  trolley.  Neglecting 
friction,  find  the  acceleration  produced. 

Ex.  9.     Work  out  Ex.  8  if  the  acting  weight  is  1-0  lb.  instead  of  1*5  lb. 

*82.  As  a  further  example  of  Newton's  Third  Law,  take  a  more  com- 
plicated set  of  masses  and  pulleys,,  as  shown  in 

Fig.  61.  The  axle  of  the  upper  pulley  is  supposed 
to  be  fixed,  the  lower  being  hung  on  the  rope 
carrying  A.  The  masses  of  all  ropes  and  pulleys, 
as  well  as  friction,  may  for  simplicity  be  disregarded. 

Call  the  tension  in  the  upper  rope  Ti  poundals, 
and  draw  the  force  and  acceleration  diagrams  for  A 
as  in  Fig,  62  (i)  and  (ii),  i.e.  we  assume  A  has  a 
downward  acceleration  of  aj  ft.  per  sec.  per  sec. 

Then  we  can  write  down  the  "  equation  of  motion  " 

420  X  32-2 -Ti  =  420  xai    (1). 

Fig.  62  (iii)  represents  the  force  diagram  for  the 
lower  pulley;  as  its  mass  is  negligibly  small,  there 
can  be  no  resultant  force  on  it,  so 

QIOMw. 
200 /6s. 

Fig.  61. 

:2r„ 

.(2). 

Here  we  have  denoted  the  tension  of  the  lower  rope  by  T^  poundals  ;  it 
must  be  equal  on  both  sides  of  the  pulley  as  there  is  nothing  to  cause  a 

change  of  tension  in  passing  over  the  pulley.  And  by  Newton's  Third  Law 
the  upward  pull  of  the  upper  rope  on  this  pulley  must  be  the  same  as  on  A, 
i.e.  Tj  poundals. 
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420x32-2 

(i) 

420x  <2  i 

(ii) 
Fig.  62. 

Call  the  upward  acceleration  of  B  and  G  a^  and  a^  ft.  per  sec.  per  sec. 
respectively  ;  then  their  force  and  acceleration  diagrams  are  as  in  Fig.  63 

(i)  and  (ii). 
So  their  equations  of  motion  are 

^2- 210  X  32-2  =  210a2      (3), 

T2- 200  X  32-2  =  200a3      (4). 

210xa2 

210x32-2 

(i) 

A200xa3 

Fig.  63. 

200x32-2 

(ii) 

There  must  be  some  connection  between  the  accelerations  a^ ,  a.,  and  ̂ 3  ; 
we  shall  most  easily  discover  it  imagining  the  bodies  to  start  from  rest 

and  finding  how  far  each  will  have  moved  in  1  second,     ̂ 's  average  speed 

downward  during  this  time  is  -^  ft.  per  sec,  so  it  will  have  dropped 

-^  ft.  ;  hence  the  lower  pulley  will  have  risen  -^  ft.  Similarly  B  will  have 

risen  -^  ft.,  so  the  length  of  rope  between  B  and  the  lower  pulley  will  have 

lengthened  by  (  -^  -  -^  j  ft.     Similarly  the  length  of  rope  between  C  and  the 
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lower  pulley  will  have  lengthened  by  (  -^  -  -^  j  ft.     Now  the  length  of  this 
rope  does  not  change,  so 

(M)-(t-l)=''. or  2a^  =  a2  +  a3   (5). 
From  these  five  equations  we  can  calculate  each  of  the  three  accelerations 

and  the  tensions  of  the  two  ropes. 

*Ex.  lO.     Find  the  acceleration  of  A  in  above  case. 

83.  Momentum.  Repeat  the  experiment  described  in 

Art.  77,  but  remove  the  effects  of  friction  by  putting  each 

trolley  on  a  separate  plane,  sloped  so  that  they  run  down  with 

Fig.  64. 

constant  speed.  Hold  the  trolleys  apart,  and  let  them  go 

simultaneously ;  take  the  tracings  and  determine  from  tliera  the 
value  of  the  velocity  of  each  after  the  spring  between  them  has 

recovered  its  original  length ;  these  velocities  will  then  be 
constant. 

In  a  particular  case,  the  mass  of  A  was  2370  grms.,  the  mass 

of  B  was  3490  grms. ;  the  period  of  the  spring  was  i  sec. ;  the 

final  speed  of  A  was  found  to  be  6*80  cm.  in  ̂   sec,  or  34  cm. 

per  sec.  ;  the  final  speed  of  B  was  found  to  be  4*60  cm.  in  \  sec. 
or  23  cm.  per  sec. 

We  know  that  the  forces  acting  on  A  and  B  were  at  every 
instant  the  same,  and  of  course  A  and  B  were  under  the  action 

of  these  forces  for  the  same  length  of  time,  so  the  effect  on  A 

and  B  should  be  the  same.  A  and  B  have  not  acquired  the 

same  speed;  have  they  acquired  the  same  kinetic  energy?  The 

final  kinetic  energy  oi  A  is  i  x  2370  x  34^  ergs,  or  1,370,000 
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ergs ;  the  final  kinetic  energy  of  ̂   is  J  x  3490  x  23^  ergs,  or 
923,000  ergs.  The  difference  between  these  results  is  clearly 

greater  than  any  probable  error  of  experiment,  so  we  must  admit 
that  under  these  circumstances  the  two  bodies  do  not  acquire  the 

same  energy. 

But  try  another  possible  way  of  representing  the  "quantity  of 
motion  "  of  a  body ;  multiply  together  the  numbers  representing 
its  mass  and  its  velocity.  Doing  this  for  A  we  get  as  a  result 
2370  X  34  or  80,580,  and  for  B  we  get  3490  x  23  or  80,260. 

These  differ  by  less  than  \  per  cent.,  which  is  of  course  well 
within  the  error  of  experiment.  So  it  appears  that  under  some 

circumstances  this  is  a  suitable  way  to  represent  the  quantity  of 
motion  in  a  body. 

A  special  name  "  Momentum ''  is  given  to  the  product  of 
the  number  of  units  of  mass  into  the  number  of  units  of  velocity 

of  a  body. 

We  know  (Arts.  42  and  65)  that  if  the  same  (or  equal)  forces 
act  on  two  bodies  through  the  same  displacement^  the  two  bodies 

acquire  the  same  increase  of  energy,  whatever  their  masses  ;  we 
have  just  seen  a  case  in  which  the  same  forces  act  on  two  bodies 

of  different  masses  for  the  same  time,  and  the  two  bodies  acquire 
the  same  increase  of  momentum. 

The  momentum  of  a  body  is  one  way  of  measuring  the 

"  quantity  of  motion "  it  has  in  it,  the  kinetic  energy  being 
another  way ;  it  is  better  to  use  sometimes  one,  sometimes  the 

other,  according  to  the  problem  to  be  solved.  Care  has  always 
to  be  taken  in  deciding  which  to  select ;  no  general  rule  can  be 
laid  down  to  cover  all  cases,  though  momentum  is  usually  the 

better  when  the  time  of  action  of  the  force  is  given,  energy  when 
the  displacement  under  the  action  of  the  force  is  known  and  we 

are  sure  that  no  energy  is  lost  by  friction,  etc.  No  name  is 
given  to  the  unit  momentum ;  but  the  units  in  which  the 

momentum  is  expressed  must  be  stated,  usually  "  foot-pound- 
second "  or  "c.  G.s."  units  are  used.  Then  a  momentum  of 

"50   f.p.s.    units"   would   mean   the  momentum  of   a  mass    of 
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50  lbs.  moving  at  1  ft.  per  sec,  or  of  a  mass  of  25  lbs.  moving  at 
2  ft.  per  sec,  and  so  on. 

Ex.  11.  What  is  the  momentum  of  a  ma^  of  5  lbs.  moving  with  a  speed 
of  20  ft.  per  see.  ? 

Ex.  12.  What  is  the  momentum  of  a  mass  of  200  tons  moving  at  a  speed 
of  60  miles  an  hour  ?     (Express  in  f.p.s.  units.) 

Ex.  13.  A  body  of  mass  80  tons  has  a  momentum  of  254,285  f.p.s.  units; 
what  is  its  speed  ? 

Ex.  14.  A  12  stone  man  runs  at  10  miles  an  hour;  what  is  his  momen- 
tum? With  what  speed  must  an  8  stone  man  run,  in  order  to  have  the  same 

momentum  ? 

Ex.  15.     Will  the  two  men  in  Ex.  14  have  the  same  kinetic  energy  ? 

84.    Momentum  produced    by   a    constant    force. 

If  we  know  that  the  force  on  a  body  is  constant,  and  we  also 

know  the  length  of  time  during  which  the  force  acts,  we  can 
easily  calculate  the  momentum  produced.     Consider  for  example 

a  shell,  weighing  1  cwt.,  which  is  being  fired  from  a  gun  ;  suppose 

that  the  powder  burns  slowly  enough    to    keep  up  a  constant 
pressure  on  the  base  of  the  shell  while  it  is  within  the  gun,  and 

that  this  pressure  is  100  tons  wt.  (or  100  x  2240  x  32'2  poundals); 
and   suppose   the    shell    takes    /g    sec.    to   travel    up    the   gun. 
We   know   that    the  force  equals  the  product  of   the  numbers 
representing  the  mass  and  acceleration ;    so  the  acceleration  is 

100x2240x32-2^^  ^,  ,^^„^ 
  =-j-^   ft.  per  sec.  per  sec,  or  64,400  ft.  per  sec.  per  sec. 

Hence  the  speed  attained  at  the  end  of  ̂ V  sec.  from  rest  is 

2^  X  64,400,  or  2300,  ft.  per  sec,  and  the  momentum  attained 
by  the  shell  is  112  x  2300  f.  p.  s.  units,  or  257,600  f.  p.  s. 
units. 

By  Newton's  Third  Law,  the  force  on  the  gun  is  also  100 
tons  wt.,  and  it  clearly  acts  for  the  same  time,  gV  ̂^^'  y  bence  if 
the  gun  is  free  to  recoil  and  if  we  know  its  mass  (80  tons,  say), 

we  can  in  the  same  way  calculate  its  final  speed  and  momentum. 
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These  are  ̂ r^  x     /"    ^,  or  1*4375,  ft.  per  sec.  for  the 

speed,  and  80  x  2240  x  1-4375  or  257,600  f.  p.  s.  units  for  the 
momentum.  As  before,  we  find  that  the  momentum  of  each  of 
the  two  bodies  which  reacted  on  one  another  is  the  same,  but  in 

opposite  directions. 

We  can  give  a  simple  general  proof  of  the  truth  of  what  has 
just  been  laboriously  calculated  out  in  a  particular  case,  as 
follows. 

85.  If  we  denote  the  mass  of  a  body  by  m,  the  constant 

force  on  it  by  F,  and  the  acceleration  produced  in  it  by  a,  using 
either  British  or  c.  G.  s.  units,  we  know  (Art.  27)  that  these 

numbers  are  connected  by  the  equation  F  =  ma.  Now  the 
acceleration  means  the  increase  (or  decrease)  of  velocity  each 

second ;  so  ma  measures  the  increase  (or  decrease)  of  the  momen- 
tum of  the  body  each  second.  Hence  if  the  constant  force  F 

acts  on  the  body  for  one  second,  the  increase  (or  decrease)  of 
momentum  is  ma,  that  is  F ;  if  it  acts  for  t  sees.,  the  change  of 
momentum  is  ma  x  t,  or  Ft.  So  if  a  constant  force  F  acts  on  a 

body  for  t  sees.,  the  change  of  momentum  produced  is  measured 
by  Ft ;  or  in  words,  the  change  of  momentum  in  a  body  under  the 

action  oj  a  constant  force  is  measured  by  the  product  of  the  numbers 
representing  the  force  and  the  time  during  which  it  acts, 

Ex.  16.  A  mass  of  2  kilograms  falls  freely  from  rest  for  ̂   sec;  what 
momentum  does  it  acquire  ? 

Its  acceleration  is  981  cm.  per  sec.  per  sec,  so  its  velocity  after  one 
third  of  a  second  is  327  cm.  per  sec.  Hence  its  momentum  is  654,000  c.g.s. 
units. 

Ex.  17.  A  train  weighing  200  tons  is  moving  at  60  miles  an  hour ;  what 
is  its  momentum  ?  It  is  brought  to  rest  by  a  constant  braking  force  in  one 
minute  ;  what  is  the  braking  force  ? 

Its  momentum  is  200x2240x88  f.p.s.  units.  If  i*^  poundals  is  the 
braking  force,  the  product  of  the  force  and  the  time  during  which  it  acts  is 
Fx  60  in  British  units,  so  60i^  =  200  x  2240  x  88;  hence  2^=  657,000  poundals 
or  20,400  lbs.  wt. 
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Zix.  18.  A  motor  car  weighing  1  ton  is  moving  at  20  miles  an  hour,  and 
is  brought  to  rest  by  a  constant  braking  force  in  10  sees.  ;  what  is  the 
braking  force  ? 

Ex.  19.  If  the  greatest  braking  force  that  «an  be  exerted  on  the  train  in 
Ex,  17  is  one  seventh  of  its  dead  weight,  what  is  the  shortest  time  in  which  it 

can  be  brought  to  rest? 

Ex.  20.     How  far  will  the  train  in  Ex.  19  run  before  stopping  ? 

When  two  bodies  act  on  one  another  with  a  constant  force, 

we  know  that  the  action  and  reaction  are  equal  and  opposite, 
and  these  forces  must  be  in  action  on  both  bodies  for  the  same 

time ;  hence  from  the  last  paragraph,  if  no  other  resultant  forces 
act  on  them,  the  change  of  momentum  in  each  must  be  the  same. 

We  may  put  this  in  another  way ;  when  two  bodies  act  on 
one  another  with  a  constant  force  for  any  length  of  time  the  loss 

of  momentum  in  one  body  is  equal  to  the  gain  of  momentum 

in  the  other.  Here  we  are  regarding  the  momentum  as  being 

positive  in  one  direction  and  negative  in  the  other,  like  velocity. 

Ex.  21.  A  rifle  of  mass  8  lbs.  fires  a  bullet  of  mass  1  oz.  with  a  muzzle 

velocity  of  2400  ft.  per  sec.  Find  the  speed  of  recoil  of  the  rifle,  if  unresisted. 
Find  also  the  kinetic  energy  of  the  rifle  and  bullet. 

The  momentum  of  the  bullet  is  y\  x  2400  or  150  f.p.s.  units  ;  this  must 

therefore  be  the  backward  momentum  of  the  rifle  ;  so  its  velocity  is  ̂ f^  or 
18*75  ft.  per  sec. 

The  kinetic  energy  of  the  bullet  is  |  x  ̂-^  x  2400^  or  180,000  ft.-poundals ; 
the  kinetic  energy  of  the  rifle  is  ̂ x  8  x  18*752  or  about  1406  ft.-poundals. 
So  the  bullet  carries  off  nearly  all  the  energy  of  the  explosion  although  the 
xnomentuin  of  the  bullet  and  rifle  are  the  same. 

Ex.  22.  A  gun  weighing  6  tons  fires  a  12  lb.  shot  with  a  muzzle  velocity 
of  1800  ft.  per  sec.  ;  find  the  speed  of  recoil  of  the  gun  if  unresisted. 

Ex.  23.  Compare  the  momentum  of  a  12  stone  man  running  100  yds.  in 
10  sees,  with  the  momentum  of  a  rifle  bullet  of  mass  1  oz.  moving  at  2400  ft. 
per  sec.     Compare  also  their  kinetic  energies. 

Ex.  24.  A  10  stone  man  standing  on  smooth  ice  discharges  in  a  hori- 
zontal direction  a  rifle  weighing  7  lbs.  The  bullet  weighs  1  oz.  and  has  a 

muzzle  velocity  of  2200  ft.  per  sec.  With  what  velocity  will  the  man 
recoil  ? 
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86.  Sign  of  Momentum.  It  is  important  to  note  that 

momentum,  like  velocity  but  unlike  kinetic  energy,  has  direction 

as  well  as  magnitude ;  in  particular,  if  we  are  considering  motion 
in  one  straight  line  only,  a  body  moving  in  the  direction  which 
we  take  as  the  positive  direction  has  positive  momentum,  and  if 

it  moves  in  the  opposite  direction  its  momentum  is  negative. 
So  if  a  rifle  containing  a  cartridge  is  at  rest,  and  is  fired,  the 
final  momenta  of  the  rifle  and  cartridge  are  together  zero,  since 

they  are  equal  in  magnitude  and  opposite  in  sign. 
The  velocity  of  a  body  can  be  resolved  into  two  components, 

so  the  momentum  can  also  be  resolved  into  two  components.  If 

a  force  acts  on  a  body  already  in  motion,  it  produces  a  corre- 
sponding change  of  velocity  in  the  direction  of  the  force  (see 

Art,  41),  and  therefore  it  changes  the  component  of  the 
momentum  in  that  direction  only. 

87.  Collision.  It  is  a  common  occurrence  for  a  body  in 

motion  to  act  on  another  body  at  rest,  and  the  force  between 

them  does  not  usually  remain  constant ;  for  example,  a  billiard 

ball  striking  another,  a  foot  striking  a  football,  a  hammer 

striking  a  nail,  wind  blowing  on  a  sail,  etc.  In  all  such  cases 

the  loss  of  momentum  by  one  body  is  equal  to  the  gain  of 
momentum  by  the  other,  even  if  the  force  between  them  varies 
during  the  time  in  which  they  react  on  one  another.  If  we 

knew  the  magnitude  of  this  force  at  every  instant  during  the 
reaction,  we  might  be  able  to  calculate  the  change  of  momentum 
it  would  produce ;  but  in  the  majority  of  such  cases  we  cannot 

tell  accurately  how  the  force  varied,  nor  what  its  magnitude  was 

at  each  instant,  nor  even  how  long  the  bodies  were  acting  on 
one  another.  But  theory  and  experiment  both  show  that  the 
final  result  of  the  action  is  that  one  body  gains  exactly  the  same 

amount  of  momentum  as  the  other  loses,  and  we  are  chiefly 

concerned  with  the  final  result.  We  will  now  show  this  by  some 
experiments. 

Experiment  i.    Take  two  trolleys,  A  and  B  (Fig.  65),  on  a  plane 
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sloped  to  balance  frictional  resistances.  They  are  connected 
by  a  thread  and  spiral  spring,  as  described  in  Art.  77.  ̂   is 

initially  at  rest,  and  A  moving  at  uniform  speed  to  the  right; 
the  thread  is  at  first  slack.      When  the  Ihread  becomes  taut  and 

l(^-iL_l(7^1rrrrrr^  .  T^ 

f^^^^ 

■/■/- '/   nj. J  u  u  J  n  f  f  f//  /M 

.  Fig.  65. 

the  spring  begins  to  stretch,  B  begins  to  experience  a  force 

urging  it  to  the  right,  and  A  a  retarding  force  which  at  every 
moment  is  equal  to  the  accelerating  force  on  B  at  the  same 
moment.  This  force  increases  as  the  spring  is  stretched  further, 
until  it  reaches  a  maximum  when  B  is  moving  at  the  same  speed 

as  A  ;  after  this,  ̂ 's  speed  becomes  greater  than  ̂ 's,  and  the 
extension  of  the  spring  decreases  as  B  closes  up  on  A,  until 

finally  the  string  becomes  slack  again,  and  B  and  A  'move  each 
with  its  own  constant  velocity ;  B's  speed  being  the  greater. 
B  will  of  course  subsequently  catch  up  A  and  collide  with  it,  but 
we  will  not  for  the  present  concern  ourselves  with  that. 

The  following  are  the  results  of  an  experiment  to  illustrate 

this.  A  weighed  7  lbs.  9  oz.,  and  B  weighed  5  lbs.  3  oz.,  and  ̂ 's 
initial  speed  was  observed  to  be  4825  ft.  per  sec.  After  the 

spring  had  ceased  to  act,  ̂ 's  final  speed  was  found  to  be 

•0910  ft.  per  sec,  and  ̂ 's  was  -572  ft.  per  sec.,  all  in  the' same 
direction.      Hence   ̂ 's   initial    momentum  was    7 

IF 

•4825   or 

3'65  f.p.s.  units,  and  its  final  momentum  was  7y''^x-0910  or 

•688  f.p.s.  units;  so  it  lost  2*96  f.p.s.  units.  B  gained 

53-^^  X -572  or  2-97  f.p.s.  units.  The  difierence  between  the 
gain  and  loss  is  within  the  error  of  observation. 

Another  experiment  illustrates  it ;  A  and  B  were  adjusted  to 

have  equal  masses,  and  A  was  brought  to  rest,  and  B  took  up 

A's  original  speed  ;  in  this  case  it  is  obvious  that  ̂ 's  gain  of 

momentum  equals  A's  loss. 
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If  ̂   is  a  good  deal  heavier  than  A,  then  ̂ 's  final  velocity 
will  be  in  the  opposite  direction ;  but  it  is  not  easy  to  arrange 

an  experiment  to  verify  the  principle  numerically  in  this  case, 

as  the  slope  of  the  plane  necessary  to  counteract  friction  is 

against  A  when  its  velocity  is  reversed,  so  this  velocity  is  not 
constant  and  cannot  be  measured.  But  A  will  be  seen  to  start 

up  the  plane  as  the  spring  relaxes,  though  it  soon  comes  to  rest. 

88.  We  can  see  that  these  experimental  results  must  be 

true,  from  theoretical  considerations,  as  follows.  Although  while 

the  spring  is  stretched  the  force  it  exerts  is  continually  changing, 

yet  at  any  moment  it  is  exerting  the  same  forces  on  A  and  B ; 

so  it  may  be  considered  to  be  obvious  that  during  any  period 

while  the  force  is  in  action  the  increase  of  J's  momentum  is 

equal  to  the  (numerical)  increase  of  ̂ 's  momentum,  since  we 
have  shown  that,  at  any  rate  for  a  constant  force,  this  change  of 

momentum  is  equal  to  the  product  of  the  force  and  the  time  of 
action. 

If  further  explanation  of  this  be  needed,  consider  any  short  period  of 
the  motion,  say  one  millionth  of  a  second ;  suppose  that  the  spring  is 
extended  altogether  during  two  seconds,  exerting  a  force  of  six  poundals 
when  at  its  maximum.  Suppose  at  the  beginning  of  the  millionth  of 

a  second  the  force  is  4  poundals,  and  at  the  end  it  is  4-00018  poundals ; 
since  the  force  never  differs  from  4  poundals  by  more  than  -00018  poundal, 
we  shall  not  make  an  error  of  2  in  40,000,  or  one  two  hundredth  per  cent., 
if  we  consider  the  force  during  the  millionth  of  a  second  to  be  constant 

(and  equal  to  4  poundals),  and  hence  take  the  increase  in  i>'s  momentum, 
and  decrease  in  A's  momentum,  to  be  equal  to  one  another  (both  being 

4  X  _  _  -  -  .,  -  „  f.p.s.  units)  during  this  period.     If  we  take  a  shorter  period, 
l,OUu,(JuU 

the  percentage  error  will  be  still  smaller.     So  we  can  cut  up  the  time  into 
very  small  intervals  in  each  of  which  B  gains  as  much  momentum  as  A  loses, 
to  any  required  degree  of  accuracy ;  adding  these  changes  together  for  the 
whole  2  sees.  B  will  gain  as  much  as  A  loses  altogether. 

89.  The  same  considerations,  when  applied  to  the  mutual 

reactions  of  any  two  bodies,  show  that  one  always  gains  as  much 

momentum  as  the  other  loses,  whatever  the  mechanism  by  which 
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they  exert  force  on  one  another.  This  may  be  shown  experi- 
mentally in  other  cases,  as  follows. 

Experiment  ii.  Put  two  trolleys  on  a  plane,  sloped  to  over- 
come frictional  resistance ;  the  trolley  a  should  be  provided  with 

a  stud  of  ivory  or  steel  in  the  end  of  each,  which  act  as  buffers 

when  the  trolleys  collide.  Stand  one  trolley  in  tlie  middle  of  the 

plane,  and  start  the  other  with  a  push  from  the  upper  end  of  the 

plane ;  take  a  tracing  of  the  motion  of  each,  the  frequency  of 
vibration  of  the  two  springs  being  known,  or  at  any  rate  being 

adjusted  to  be  equal.  Determine  the  uniform  speed  of  the  first 
trolley  before  it  collides  with  the  other,  and  the  speeds  of  each 
after  the  blow  ;  determine  the  masses  of  the  trolleys,  and  calculate 
the  momentum  of  each  before  and  after  the  collision.  It  will  be 

found  that  the  "algebraic"  sum  of  the  momenta  of  the  two 
trolleys  after  the  collision  will  be  very  approximately  equal  to 
the  momentum  of  the  trolley  originally  set  in  motion.  If  the 
mass  of  the  stationary  trolley  is  a  good  deal  greater  than  that  of 

the  moving  trolley,  the  velocity  of  the  latter  may  be  reversed  in 

direction  by  the  collision,  so  we  must  use  the  "algebraic,"  not 
numerical,  sum  of  the  final  momenta. 

For  example,  the  mass  of  the  moving  trolley  is  7-75  lbs.  and 
of  the  stationary  trolley  is  6'5  lbs.,  and  the  speed  given  to  the 

former  is  observed  to  be  2*68  ft.  per  sec,  the  final  speed  of  the 
former  is  -975  ft.  per  sec.  in  the  same  direction  as  before,  and 
the  speed  of  the  latter  is  192  ft.  per  sec.  Then  the  original 

momentum  is  20*76  f.p.s.  units,  and  the  algebraic  sum  of  the 

final  momenta  is  7-75  x  -975  +  6*5  x  1*92  or  20  f.p.s.  units. 
Experiment  iii.  Repeat  the  experiment,  using  instead  of 

trolleys  with  ivory  buffers  one  furnished  with  a  spike  and  the 
other  with  a  cork  into  which  the  spike  will  stick  when  they 
collide ;  then  after  the  collision  the  two  trolleys  will  move  on  as 
one  body.  In  this  case,  a  tracing  of  the  motion  of  the  one 

trolley  will  be  sufficient.  As  before,  the  final  momentum  will  be 
found  to  be  equal  to  the  momentum  before  collision. 

For  example,  the  mass  of  the  moving  trolley  is  7  lbs.,  that  of 
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the  stationary  trolley  is  4  lbs.,  and  the  initial  and  final  speeds 

are  found  to  be  '6  and  -382  ft.  per  sec.  respectively.  Then  the 
original  momentum  is  7  x  -6  or  4*2  f.  p.  s.  units,  and  the  final 

momentum  is  (7  +  4)  x  -382  or  4*202  units. 
Experiment  iv.  Two  trolleys  stand  in  a  line,  one  carrying  a 

pistol,  the  other  a  target ;  an  electro-magnet  is  arranged  on  the 
first  trolley  so  that  it  pulls  the  trigger  when  contact  is  made  by 
means  of  a  switch ;  the  switch  and  battery  are  separate  from  the 
trolley,  and  the  circuit  is  completed  when  the  trolley  is  at  its 
starting  position  through  a  pair  of  sliding  contacts  which  do  not 

impede  the  trolley's  motion.  If  the  pistol  is  fired  so  that  the 
bullet  enters  the  target,  and  tracings  of  the  motion  of  the  two 

trolleys  are  taken,  it  will  be  found  that  the  backward  momentum 
of  the  pistol  and  its  trolley  is  equal  to  the  forward  momentum  of 
the  bullet  and  its  trolley.  If  we  know  the  mass  of  the  bullet  we 

can  calculate  its  muzzle  velocity,  assuming  that  the  momentum 
of  the  bullet  is  equal  to  that  of  the  pistol  and  its  trolley,  or  of 

the  bullet,  target  and  trolley ;  the  bullet  of  course  transfers  this 
momentum  to  the  target  when  it  penetrates  it. 

For  example,  the  trolley  carrying  the  pistol  and  electro- magnet 

weighs  4 "5  lbs.,  the  trolley  carrying  the  target  weighs  7*2  lbs. 
After  the  shot  has  been  fired  the  speed  of  the  former  is  found  to 

be  "78  ft.  per  sec,  and  of  the  latter  '5  ft.  per  sec.  So  the 
momentum  of  the  former  is  3*51  f.p.s.  units,  and  of  the  latter 

3' 6  f.p.s.  units. 
If  we  take  the  mean  of  these  two  values  as  being  the  most 

probable  value  of  the  momentum,  the  momentum  of  the  bullet 

must  have  been  3*55  f.p.s.   units.     The  mass  of  the  bullet  was 
3'55 

1  -75  grms.  or  '003859  lb.  ;  hence  its  speed  was  or  920 
*UUoo09 

ft.  per  sec. 

90.  Conservation  of  Momentum.  All  these  are  illus- 

trations of  the  general  principle  called  The  Conservation  of 

Momentum.      "  2^he  total  inomentuin  of  any  system  of  bodies  is 
A.  11 
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not  changed  by  any  mutual  actions  betiveen  the  bodies  forming  the 

system  J'  We  have  shown  that  it  must  be  the  case  by  theoretical 

reasoning,  and  have  verified  it  numericallj'^  in  several  instances  ; 
it  can  however  be  deduced  directly  froto  the  definition  of  Mass, 

and  is  not  an  important  law  of  Nature  like  the  law  of  Con- 
servation of  Energy.  This  latter  law  can  only  be  established  by 

a  long  series  of  experiments  dealing  with  the  various  forms 

which  energy  can  take,  mechanical,  thermal,  electrical,  etc., 

whereas  the  law  of  conservation  of  momentum  requires  no 

experiments  to  establish  it ;  but  experiments  are  convenient  for 

making  clear  the  meaning  of  the  law. 

Ex.  25.  A  railway  truck  of  mass  10  tons  moving  at  5  miles  an  hour  hits 
another  of  mass  8  tons  standing  still,  and  is  automatically  coupled  to  it ; 
with  what  speed  will  they  run  on  ? 

Ex.  26.     A  bullet  of  mass  1  oz.  moving  horizontally  at  2400  ft.  per  sec. 
buries  itself  in  a  block  of  wood  weighing 

10  lbs.,  hung  up  so  that  it  is  free  to 
swing  horizontally  ;  what  will  be  the 
inital  speed  of  the  block  and  bullet? 
Hence  calculate  the  kinetic  energy  of 
the  block  and  bullet.  If  the  block  is 

hung  as  in  Fig.  66,  so  that  it  swings 
upwards  parallel  to  itself,  how  high  will 
it  rise  before  coming  to  rest,  i.e.  before 
its  kinetic  energy  is  all  changed  into 

potential  energy  ? 
The  initial  momentum  of  the  bullet 

the   velocity  of   the  block   and  bullet  is 

ft.  per  sec.     Hence  its   kinetic  energy  is 

Fig.  66. 

is   Y^^  X  2400  f.p.s.   units; 

.  (104)    or 
jgx240

0 

hence 
2400 

I6l 

161      2400     2400  ,^ 
X   rrrr  X    ̂ ...     X     ,„,      ft.-pOUndalS. When  it  has  risen  vertically  through 16        161        161 

X  ft.,  it  will  have  gained  W-  x  32-2  x  x  ft.-poundals  of  potential  energy,  so  if 
it  rises  x  ft.  before  coming  to  rest 

161 
16 x32-2xa;: 

1      161      2400     2400 

2^16  ̂   161  ̂   161 

whence 
2400  x  2400 3-45  ft. 

2  X  32-2  X  161  X  161 

This  is  a  method  used  for  measuring  the  muzzle  velocity  of  bullets. 
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Ex.  27.  If  a  bullet  of  mass  1  oz.  is  fired  into  a  block  of  wood  weighing 
12  lbs.,  as  in  Ex.  26,  and  the  block  is  observed  to  swing  up  through  a  vertical 
height  of  2  ft.,  what  was  the  muzzle  velocity  of  the  bullet  ? 

91.  Loss  of  kinetic  energy  in  a  collision.  In  nearly 

all  cases  of  collision,  although  the  total  momentum  is  "  conserved," 
that  is,  maintained  without  loss,  the  kinetic  energy  is  not  con- 

served, some  of  the  energy  being  changed  into  heat.  An 

example  will  show  this  best ;  take  the  case  of  Experiment  iii  in 

Art.  89.  The  initial  kinetic  energy  is  J  x  7  x  -6^  ft.-poundals 
or  1"26  ft.-poundals  ;  after  the  collision  the  kinetic  energy  is 

I  X  7  X  -3822  -H  1  X  4  X  -3822  ft.-poundals,  or  -8026  ft.-poundals. 
So  more  than  a  third  of  the  kinetic  energy  is  lost  in  the 

collision.  If  the  example  given  under  Experiment  ii  is  worked 

out  in  the  same  way,  it  will  be  found  that  the  proportion  of 
kinetic  energy  lost  is  smaller  than  this  ;  the  buffers  in  this  case 

are  more  "  elastic "  than  in  Experiment  iii,  where  they  are 
entirely  without  elasticity;  the  steel  spiral  spring  described  in 
Experiment  i  is  practically  perfectly  elastic,  and  if  the  values  of 
the  original  and  final  kinetic  energies  are  calculated,  it  will  be 

found  that  there  is  no  loss  of  kinetic  energy. 

But  this  is  very  exceptional ;  even  with  buffers  made  of  ivory 

or  steel  (which  are  very  elastic  materials)  there  will  be  some  loss 
of  kinetic  energy ;  the  force  which  they  exert  while  springing 
back  into  their  original  shape  being  less  than  that  which  was 
needed  to  distort  them  from  that  shape. 

In  choosing  the  method  of  attacking  a  given  problem,  this 

fact  must  be  remembered,  and  unless  you  are  quite  certain  that 
there  is  no  change  in  the  amount  of  mechanical  energy,  you  must 

not  use  the  principle  of  conservation  of  energy.  When  the 

energy  changes  its  form  from  kinetic  to  potential  (e.g.  in  the 

flight  of  a  projectile)  the  principle  can  be  applied,  but  not  when 
mechanical  energy  is  changed  into  electrical,  thermal  or  other 

forms.  In  either  case,  the  principle  of  conservation  of  momentum 

can  be  applied,  but  is  frequently  more  roundabout  than  the 

energy  method,  which  should  therefore  be  used  when  possible. 

11—2 
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Ex.  28.  A  coal  truck  of  10  tons  weight  is  standing  on  the  line  when 
another  truck  of  7  tons  weight  runs  into  it  at  8  miles  an  hour.  The  result 
of  the  collision  is  that  the  7  ton  truck  stops  dead.  Find,  by  the  principle  of 
the  conservation  of  momentum,  the  speed  at  which  the  10  ton  truck  starts 
off.  Hence  calculate  the  loss  of  kinetic  energy  in  the  collision,  expressed  in 

ft.-poundals. 

92.  Collision  with  a  ̂ ^  fixed  ̂ ^  body.  When  a  body 
(for  example  a  racket  ball)  collides  with  another  which  is  rigidly 

fixed  to  the  earth  (for  example  the  wall  of  the  racket  court),  the 

principle  of  the  conservation  of  momentum  must  still  hold.  But 
now  one  of  the  bodies  is  the  earth,  and  its  mass  is  so  enormous 

that  a  moderate  change  in  its  momentum  will  not  involve  any 

appreciable  change  in  its  velocity.  So  we  must  treat  this  body 

as  immoveable,  and  the  principle  of  conservation  of  momentum 

will  not  help  us  to  find  how  the  body  moves  in  such  a  case. 

93.  Average  force.  When  two  bodies  act  on  one 

another,  the  force  between  them  is  seldom  constant;  and  often 
we  do  not  know  how  it  varies.  In  such  cases  it  is  sometimes 

convenient  to  know  what  was  the  average  value  of  the  force, 

i.e.  that  constant  force  which,  acting  for  the  same  time  as  the 

variable  force,  would  produce  the  same  change  of  m,omentum. 

This  average  value  of  the  force  is  of  course  less  than  the 

greatest  value  to  which  the  force  actually  rises  if  it  is  variable, 

but  it  is  not  usually  less  than  half  of  that  value,  so  it  gives  us 

some  approximation  to  the  force  actually  exerted. 

For  example,  a  ship  of  10,000  tons  moving  at  3  miles  an  hour  after  being 
launched  is  stopped  in  1  minute ;  what  is  the  average  value  of  the  force  ? 

3  miles  an  hour  is  4-4  ft.  per  sec.  ;  so  the  momentum  destroyed  is 
10,000  X  2240  X  4-4  f.p.  s.  units.  If  F  poundals  be  the  constant  force  which 
acting  for  60  sees,  destroys  this  momentum,  then  i^  x  60  =  10,000  x  2240  x  4-4, 
whence  F=  1,643,000  poundals,  or  22-8  tons  weight.  If  the  force 
stopping  it  were  constant,  the  retardation  would  be  uniform ;  its  average 

speed  would  then  be  2-2  ft.  per  sec,  so  in  60  sees,  it  would  move  132  ft. 
If  the  force  is  not  constant,  we  cannot  calculate  from  the  above  data  how  far 
it  will  move  before  coming  to  rest. 
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Ex.  29.  A  hammer  whose  mass  is  ̂   lb.  strikes  a  nail  with  a  speed  of 
12  ft.  per  sec. ;  if  its  velocity  is  destroyed  by  the  reaction,  and  if  it  is  in 
contact  with  the  nail  for  liu  sec,  find  the  average  force  of  the  blow  in 
poundals  and  in  lbs.  wt. 

Ex.  30.  A  hammer  moving  at  a  speed  of  18  ft.  per  sec.  strikes  a  nail  and 
drives  it  ̂   inch  into  a  board.  Assuming  that  the  resistance  to  penetration 
is  constant,  and  that  the  mass  of  the  nail  may  be  neglected,  find  the  time 
during  which  the  force  acts. 

Since  the  retardation  is  constant,  the  average  speed  while  the  hammer's 
momentum  is  being  destroyed  is  9  ft.  per  sec. ;  since  it  moves  '5  inch  with '5  1 

this  average  speed,  the  time  occupied  in  doing  so  is  r — —  or  — ^  sec. <7  X  \a  21b 

Ex.  31.  If  the  mass  of  the  hammer  in  Ex.  30  is  1  lb.,  find  the  average 
force  of  the  blow.  Hence  find  the  work  in  ft. -poundals  done  during  the 
blow.     Compare  this  with  the  initial  kinetic  energy  of  the  hammer. 

Ex.  32.  A  cricket  ball  weighing  5J  oz.  is  travelling  horizontally  at  a 
speed  of  20  ft.  per  sec,  and  is  hit  straight  back  with  a  speed  of  60  ft. 
per  sec.  ;  find  the  change  of  momentum  ;  if  the  bat  was  in  contact  with  the 

ball  for  one-twentieth  of  a  second,  find  the  average  value  of  the  force  exerted 
by  the  bat. 

Ex.  33.  Explain  why  a  rubber-cored  golf  ball  is  less  destructive  than 

a  "gutty"  ball,  to  the  face  of  the  driver. 
(Note  that  the  former  is  in  contact  with  the  driver  for  a  longer  period 

than  the  latter.) 

94.     Average  force  during  a  succession  of  blows. 

In  most  cases  of  collision  the  time  during  which  the  two  bodies 

are  in  contact  is  so  short  that  it  requires  elaborate  experiments 

to  measure  it.  But  if  a  body  is  exposed  to  a  very  rapid  suc- 
cession of  blows,  each  of  which  may  last  a  very  short  time,  but 

the  whole  succession  lasting  for  some  little  time,  then  we  can 

both  measure  and  calculate  the  constant  force  which,  acting  for 
the  whole  of  this  time,  would  produce  the  same  total  eiFect, 

i.e.,  the  "average"  force. 
For  example,  take  the  case  of  a  Maxim  gun  which  fires  1  oz. 

bullets  with  a  muzzle  velocity  of  2000  ft.  per  sec.  at  the  rate  of 

10  bullets  a  second  ;  if  these  bullets  strike  a  target  they  will  act 

on  it  with  a  series  of  very  large  forces,  each  lasting  a  very  short 
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time,  but  with  such  short  intervals  between  them  (one-tenth  of 

a  second)  that  they  would  appear,  to  anyone  holding  up  the 

target,  to  merge  into  one  almost  continuous  pressure  (somewhat 

in  the  same  way  as  a  series  of  pictures  in  a  cinematograph  leaves 

a  continuous  impression  on  the  eye).  We  can  easily  calculate 

the  value  of  this  average  pressure;  for  during  each  ̂ ^th.  of  a 

second,  one  bullet  has  its  momentum  destroyed,  and  this  mo- 

mentum is  yY  ̂  2000  f.  p.  s.  units ;  so  the  constant  force,  F 

poundals,  which,  acting  for  one-tenth  of  a  second,  would  destroy 

this  momentum,  is  given  by  the  equation  ̂   x  yV  "=  tV  ̂  2000, 

whence  F=X2S0  poundals,  or  38-8  lbs.  wt.  This  then  is  the 
average  pressure  on  the  supports  of  the  target  produced  by  the 
stream  of  bullets. 

And  since  action  and  reaction  are  equal,  this  is  the  average 

pressure  on  the  carriage  of  the  Maxim  gun ;  in  this  case  the 

pressure  is  much  more  continuous  than  it  is  on  the  target,  since 

the  recoil  at  each  shot  is  taken  up  by  springs  and  the  inertia  of 

moving  parts  (which  eject  the  empty  cartridge  and'  reload  the 
gun  for  the  next  shot)  so  that  the  backward  thrust  of  the  carriage 

on  the  ground  is  smoothed  out  into  an  almost  uniform  force  of 
about  39  lbs.  wt. 

Miscellaneous   Exercises. 

Ex.  1.  A  gun  of  mass  35  tons  fires  a  shot  of  850  lbs.  with  a  velocity  of  i 
2000  ft.  per  see.  The  gun  recoils  against  a  constant  hydraulic  pressure  for  \ 

•125  second.     Find  the  pressure  iu  tons  wt. 

Ex.  2.     A  truck  of  mass  4  tons  moving  with  a  speed  of  5  ft.  per  sec. 
runs  into  another  of  mass  10  tons  moving  with  a  speed  of  1  ft.  per  sec. 
in  the  opposite  direction.     The  former  rebounds  after  impact  with  a  speed 

of  1'5  ft.  per  sec.  ;  find  the  velocity  of  the  latter  after  impact.     If  the  time; 
of  impact  is  one-fifth  second,  find  the  average  force  between  them  in  tons  wt.] 

Ex.  3.  A  hammer  head  of  weight  2^  lbs.  moving  at  a  speed  of  50  ft. 

per  sec.  is  stopped  in  -01  sec.     Find  the  average  force  of  the  blow. 
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Ex.  4.  A  man  can  do  a  standing  jump  of  10  ft.  on  level  ground.  If 
his  weight  is  12  stone,  and  he  wishes  to  jump  from  a  boat  weighing  2  cwt. 
on  to  a  pier  at  the  same  level,  how  far  can  the  boat  safely  be  from  the 
pier,  neglecting  friction?  (Find  his  actual  horizontal  velocity,  assuming 
that  the  sum  of  this  and  of  the  speed  of  the  boat  is  the  same  as  his  hori- 

zontal velocity  when  jumping  from  a  fixed  object.) 

Ex.  5.  A  squash  racket  ball  weighing  \  oz.  strikes  the  back  wall  at  right 
angles  to  it  with  a  speed  of  100  ft.  per  sec.  and  rebounds  with  a  speed  of 

80  ft.  per  sec,  the  time  of  contact  with  the  wall  being  -1  sec.  Calculate  the 
average  pressure  on  the  wall. 

Ex.  6.  A  cricket  ball,  mass  51  oz.,  travelling  at  64  ft.  per  sec.  is  caught 
and  during  the  catch  the  hands  are  drawn  back  through  1  foot.  Find  the 
average  force  on  the  hands  during  the  catch. 

Ex.  7.  A  trolley,  mass  10  lbs.,  moving  at  12  ft.  per  sec.  overtakes  and 
sticks  to  another  of  mass  6  lbs.  moving  in  the  same  direction  at  4  ft.  per  sec. 
What  will  be  the  common  speed  after  impact  ? 

Ex.  8.  A  Maxim  gun  fires  300  half-ounce  bullets  per  minute  with 
a  velocity  of  1500  ft.  per  sec.  Find  the  average  force  on  the  gun 
carriage. 

Ex.  9.  A  shell  bursts  during  its  flight,  when  its  speed  is  1000  ft. 
per  sec,  breaking  into  two  fragments  whose  weights  are  8  and  24  lbs.  Both 
travel  onward  in  their  original  direction,  the  former  at  a  speed  of  1600  ft. 
per  sec.  Find  the  speed  of  the  latter,  from  the  fact  that  the  total 
momentum  after  the  explosion  is  equal  to  the  momentum  of  the  shell 
before  it  burst. 

Ex.  lO.  In  tlie  case  of  the  shell  in  Ex.  9,  find  the  change  of  speed  in 
each  part  of  the  shell  and  hence  show  that  one  gains  as  much  momentum 
as  the  other  loses. 

Ex.  11.  A  shell  weighing  32  lbs.  buries  itself  in  a  box  of  earth  of 
mass  1  ton,  which  is  hung  so  that  it  can  swing  freely;  the  initial  speed 
of  the  combined  body  is  observed  to  be  20  ft.  per  sec ;  calculate  the  speed  of 
the  shell. 

Ex.  12.  A  body  of  mass  16  lbs.  moving  in  a  straight  line  has  its 
speed  reduced  in  4  sees,  from  32  to  24  ft.  per  sec.  Find  the  change  of 
momentum,  and  the  average  force  in  lbs.  wt.  opposing  its  motion  during 
this  time. 

Ex.  13.  A  rifle  bullet  whose  mass  is  25  grms.  strikes  horizontally  a 
block  of  wood  whose  mass  is  2000  grms.  lying  on  smooth  ice,  with  a  velocity 
of  400  metres  per  sec,  and  remains  embedded  in  it.  Find  the  velocity  with 
which  the  block  moves. 
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Ex.  14.  A  pile  driver  weighing  300  lbs.  falls  freely  through  a  height 

of  10  ft.  and  is  stopped  in  •!  sec.  Find  the  average  force  it  exerts  on 
the  pile. 

Ex.  15.  A  ball  of  mass  5^  oz.  strikes  %  bat  with  a  speed  of  20  ft. 

per  sec,  and  the  duration  of  contact  with  the  bat  is  -05  sec.  Find  the 
average  force  exerted  to  return  it  straight  back  to  the  bowler  at  a  speed 
of  50  ft.  per  sec. ;  also  the  magnitude  and  direction  of  the  average  force 
required  to  send  it  at  50  ft.  per  sec.  in  the  direction  of  Cover  Point,  that  is  at 

an  angle  of  120°  with  its  original  direction. 

Ex.  16.  A  motor  car  weighs  30  cwt.  and  carries  five  people  averaging 
12  stone.  It  is  moving  at  20  miles  an  hour  ;  what  will  be  the  average  force 
needed  to  stop  it  in  10  sees.  ? 

Ex.  17.  A  12  stone  man  sits  with  his  back  to  the  engine  in  a  railway 

carriage  moving  at  60  miles  an  hour  ;  a  collision  occurs  and  his  com- 
partment is  stopped  in  1  sec.  ;  find  the  average  pressure  on  his  back, 

in  lbs.  wt. 

Ex.  18.  The  diameter  of  bore  of  a  gun  is  12  inches,  and  its  length 
is  32  ft.  ;  the  projectile  weighs  850  lbs.  and  its  muzzle  velocity  is  2400  ft. 
per  sec.  Assuming  that  the  acceleration  of  the  projectile  while  in  the  gun  is 
uniform,  find  the  time  taken  to  traverse  the  length  of  the  gun  ;  hence  find 
the  average  force  on  the  projectile  and  the  average  pressure  per  sq.  in. 

Ex.  19.  If  the  gun  in  Ex.  18  is  brought  to  rest  in  18  ins.,  find  the 
pressure  in  tons  wt.  exerted  by  the  brakes. 

Ex.  20.  Steam  is  shut  off  a  train  when  running  on  the  level  at  60  miles 
an  hour,  and  the  train  slows  down  till  it  stops,  the  brakes  not  being  put  on. 
It  is  found  to  stop  in  12  mins.  4  sees,  after  running  4  miles  863  yds.  Show 
that  the  acceleration  was  not  constant,  and  hence  that  the  frictional 
resistances  which  stopped  the  train  were  not  constant. 

Ex.  21.  Calculate  the  constant  force  which  would  bring  a  train  of  200 
tons,  running  on  the  level  at  60  miles  an  hour,  to  rest  in  724  sees. ;  and 
calculate  the  constant  force  which  would  bring  it  to  rest  in  23709  ft. 

Ex.  22.  Calculate  the  average  values  of  the  force  for  the  train  of 
Ex.  20  by  the  methods  of  Arts.  59  and  93,  assuming  the  mass  of  the  train 

to  be  M  lbs. ;  is  the  time-average  the  same  as  the  space-average  in  this  case  ? 
Would  these  averages  have  been  the  same  if  the  acceleration  had  been 
uniform  ? 

Ex.  23.  A  ball  of  mass  1  oz.  strikes  a  wall  normally  at  a  speed  of  20  ft. 
per  sec.  and  rebounds  at  a  speed  of  14  ft.  per  sec.  Calculate  the  change  of 
momentum  and  the  loss  of  kinetic  energy  of  the  ball. 
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Ex.  24.  A  coal  truck  of  mass  12  tons  is  standing  on  a  level  line  when 
another  truck  of  8  tons  mass  runs  into  it  at  8  miles  an  hour.  The  collision 

results  in  the  8  ton  truck  stopping  dead.  Find  how  far  the  other  truck  runs 
on  before  coming  to  rest,  assuming  that  the  frictional  resistance  to  its 
motion  is  10  lbs.  wt.  per  ton. 

Ex.  25.  A  body  of  mass  25  lbs.  is  moving  due  N.  at  a  speed  of  4  ft.  per 
sec.  A  west  wind  exerts  a  force  of  8  lbs.  wt.  on  it  for  4  sees.  Find  the  final 
momentum. 

Ex.  26.  H.M.S.  "Iron  Duke  "  has  a  mass  of  25,000  tons;  she  can  fire  a 
broadside  of  ten  13*5  inch  guns,  each  firing  a  shell  weighing  1450  lbs.  with 
a  muzzle  velocity  of  2000  ft.  per  sec.  Calculate  the  speecj,  in  miles  per 
hour,  with  which  she  begins  to  recoil,  neglecting  the  resistance  of  the  water. 

Ex.  27.  Three  goods  trucks,  each  weighing  8  tons,  and  an  engine 
weighing  40  tons  stand  on  a  level  line  with  their  buffers  in  contact ;  when 
their  couplings  are  extended  there  is  a  gap  of  2  ft.  between  each  pair  of 
buffers.  The  engine  starts  under  a  force  of  500  lbs.  wt.,  which  remains 
constant.  When  any  truck  has  been  picked  up,  it  moves  on  as  one  body 
with  those  in  front  of  it.  Calculate  the  speed  of  each  truck  just  after  it  has 
been  set  in  motion. 

Ex.  28.  A  9-2  inch  gun,  which  weighs  28  tons  6  cwt.,  has  its  velocity 
of  recoil  destroyed  in  18  ins.  by  an  average  force  of  74  tons  wt.  The  shell 
weighs  380  lbs. ;  find  its  muzzle  velocity. 

Ex.  29.  A  billiard  ball,  mass  '4  lb.,  strikes  a  cushion  at  an  angle  of  50° 
with  the  normal  to  the  cushion,  at  a  speed  of  8  ft.  per  sec.  It  rebounds 

with  a  speed  of  7  ft.  per  sec.  at  an  angle  of  45°  with  the  normal  ;  calculate 
the  total  change  of  momentum  of  the  ball.  Hence,  if  the  time  of  contact 

with  the  cushion  is  one-fiftieth  of  a  sec,  find  the  magnitude  and  direction  of 
the  force  exerted  by  the  cushion  on  the  ball. 

Ex.  30.  A  railway  carriage  of  mass  20  tons  moving  at  3  miles  an  hour 
runs  into  another  of  the  same  mass  at  rest.  Spring  buffers  take  up  the 
kinetic  energy  lost  in  the  first  part  of  the  impact  until  the  carriages  are 
moving  forward  as  one  body.  Calculate  this  loss  of  kinetic  energy.  If  each 
of  the  four  buffers  are  then  compressed  through  3  inches,  what  is  the  force 
in  lbs.  wt.  which  each  is  then  exerting  ? 



CHAPTER  VIII 

FLUID    PRESSURE   ON    A   SURFACE 

95.  Pressure  exerted  by  a  jet  of  water.  In  Art.  94 

we  considered  the  average  pressure  exerted  on  the  target  by  a 
stream  of  bullets  which  struck  it  at  very  short  intervals. 

A  much  more  continuous  thrust  is  produced  by  a  stream  of 

water  striking  against  a  fixed  plate,  and  having  its  forward 

velocity  thereby  destroyed.  We  can  use  the  same  principle  as 
before  to  calculate  the  value  of  the  thrust.  For  example,  suppose 

that  a  jet  of  water  from  a  hose  is  directed  at  right  angles  to  a 

wall,  and  that  the  water  falls  vertically  downwards  after  striking 

the  wall.  Suppose  that  the  area  of  cross-section  of  the  jet  is  half 
a  square  inch,  and  that  the  speed  of  the  water  is  100  ft.  per  sec. 
Then  the  volume  of  water  which  reaches  the  wall  in  a  second  is 

that  of  a  cylinder  100  ft.  long  and  ̂   sq.  inch  or  ~ — — j  sq.  ft. 

in  cross-section;    so  it  is    100  x  - — ttt  oi'  "346  cub.  ft.     Since 2  X  144 

1  cub.  ft.  of  water  may  be  taken  to  weigh  62*4  lbs.,  the  mass  of 
water  which  strikes  the  wall  in  one  second  is    -346  x  62 -4   or 

21-56  lbs.     The  forward  velocity  of  this  mass  is  reduced  from 
100  ft.  per  sec.  to  zero ;  so  the  momentum  destroyed  in  a  second 

is  21-56  X  100  or  2156  f.p.s.  units.     Hence  if  i^  poundals  is  the 
constant  force  which  destroys  it,  we  have  T^x  1  =2156  or  the 

pressure  on  the  wall  is  2156  poundals,  or  66-95  lbs.  wt. 

Ex.  1.  A  jet  of  water  of  cross- section  J  sq.  in.  and  velocity  50  ft,  per  sec. 
strikes  a  plate  at  right  angles ;  find  the  pressure  on  the  plate. 
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Ex.  2.  A  fire-hose  delivers  800  gallons  of  water  per  minute  at  a  speed 
of  60  ft.  per  sec. ;  find  the  pressure  of  water  on  a  wall  which  it  strikes  at 
right  angles.     [1  gallon  of  water  weighs  10  lbs.] 

Ex.  3.  Wind  whose  speed  is  60  miles  an  hour  blows  at  right  angles  to 
a  wall ;  assuming  that  it  loses  its  speed  in  this  direction,  find  the  pressure 
per  sq.  ft.  of  the  wall ;  wt.  of  air  per  cub.  ft.  =  -0807  lb. 

96.  Pressure  of  a  stream  on  a  surface  moving  in 

same  direction.  The  ])ressure  produced  by  a  streani  of  fluid 

striking  a  surface  can  be  turned  to  practical  use  only  when  the 

surface  on  which  it  presses  yields  to  the  pressure ;  for  example, 
the  pressure  of  the  wind  on  the  sails  of  a  vessel  is  only  useful 

when  the  ship  is  urged  forward  by  the  pressure.  We  must  take 
into  account  the  velocity  of  the  surface ;  in  the  simple  case  in 
which  the  stream  of  fluid  is  moving  at  right  angles  to  the  surface, 
and  the  surface  moves  in  the  same  direction  at  a  lower  speed,  we 

may  consider  that  the  "forward"  speed  of  the  fluid  is  reduced, 
on  striking  the  surface,  to  that  of  the  surface.  Then  the  change 

of  velocity  in  the  direction  of  motion  is  equal  to  the  difference  of 
the  speeds  of  the  fluid  and  the  surface ;  and  the  amount  of  the 

fluid  which  catches  up  the  surface  in  any  given  time  is  the  same 
as  would  be  the  case  if  the  surface  was  at  rest  and  the  fluid 

moved  towards  it  with  this  difference  of  the  two  speeds. 

For  example,  if  a  wind  of  30  miles  an  hour  is  blowing  directly 
behind  a  motor  car  moving  at  20  miles  an  hour,  it  would  be  the 

same  to  a  passenger  as  if  he  were  at  rest  and  the  wind  were 

blowing  in  the  same  direction  at  30  —  20,  or  10  miles  an  hour. 
The  air  which  strikes  the  back  of  the  car  moves  on  with  a  speed 
of  20  miles  an  hour  after  striking  it,  or  loses  10  miles  an  hour 

(of  course  it  also  acquires  a  velocity  sideways,  but  we  can  neglect 

that).  In  the  course  of  an  hour,  a  column  of  air  10  miles  long 
will  hit  the  back  of  the  car,  for  at  the  end  of  the  hour  a  column 

of  air  30  miles  long  has  passed  the  place  from  which  the  car 

started,  and  the  car  has  only  got  20  miles  from  its  starting 
point.  Hence  the  amount  of  momentum  destroyed  in  an  hour 
by  the  car  is  the  same  as  if  it  stood  still  in  a  wind  of  10  miles  an 
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hour ;  hence  the  force  of  the  wind  urging  it  forwards  is  the  same. 
Of  course  if  the  surface  is  moving  towards  the  stream  of  fluid  we 

must  take  the  sum,  instead  of  the  difference,  of  the  speeds. 

97.  Action  of  w^ind  on  a  sail.  As  an  example,  suppose 
a  boat  has  the  wind  directly  astern,  blowing  at  20  miles  an 
hour,  and  that  she  is  moving  at  8  miles  an  hour  in  consequence 
of  the  pressure  of  the  wind,  and  that  her  sail  has  an  area  of 

200  sq.  ft.  set  at  right  angles  to  the  wind.  Assuming  that  the 
wind  which  strikes  the  sail  does  not  afterwards  move  faster 

forwards  than  the  sail  (we  are  not  concerned  with  any  speed  it 
may  acquire  at  right  angles  to  its  former  direction),  we  have  in 

one  hour  a  column  of  air,  20-8  or  12  miles  long  and  200  sq.  ft. 
in  cross-section,  whose  speed  is  reduced  from  20  to  8  miles  an 
hour,  or  by  12  miles  an  hour.     So  in   1   sec,  a  column  of  air 
19       1 1  (\C\       '\ 

— gA     fiA   ^^  1^'^  ̂ ^-  ̂ ^^g  ̂ ^^  200  sq.  ft.  in  cross-section  has 

its  speed  reduced  by  l|^  x  88  ft.  per  sec.  or  17-6  ft.  per  sec. 
Since  the  mass  of  1  cub.  ft.  of  air  is  -0807  lb.,  the  total  mass  of 

the  column  is  17'6.x  200  x  -0807  lb.,  and  the  momentum  des- 

troyed in  a  second  is  17-6  x  200  x  -0807  x  17-6  or  5000  f.p.s. 
units.  Hence  (see  Art.  85)  the  force  on  the  sail  is  5000 
poundals,  or  155  lbs.   wt. 

98.  Undershot  water-wheel.  As  a  practical  example 
of  the  use  made  of  the  destruction  of  the  momentum  of  water, 

we  will  consider  an  ordinary  undershot  water-wheel,  and  will 
calculate  roughly  the  force  on  it  in  a  particular  case. 

Suppose  a  stream  of  water  flows  at  a  speed  of  24  ft.  per  sec. 
in  a  rectangular  gully,  2  ft.  broad,  and  that  it  fills  it  to  a  depth 
of  1  ft.  In  the  gully  (the  bottom  of  which  is  shaped  as  in  the 
figure)  is  a  wheel  with  radial  paddles,  against  which  the  water 

strikes;  after  this  the  water  runs  away  down  the  "tail-race." 
If  the  paddles  nearly  tit  the  gully,  the  water  in  the  tail-race  will 
have  the  same  speed  as  the  circumference  of  the  wheel ;  suppose 
that  the  work  the  water-wheel  is  set  to  do  allows  it  to  move  so 
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that  this  speed  is  8  ft.  per  sec.  Then  the  depth  of  the  water  in 

the  tail-race  will  be  3  ft.,  since  it  moves  only  at  one-third  of  the 

speed  of  the  water  where  it  is  1  ft.  deep  (this  may  appear  an 

unimportant  detail,  but  it  helps  to  make  clear  where  the  water 

goes  when  its  speed  is  reduced  by  the  paddles).  In  one  second 
the  volume  of  water  which  reaches  the  wheel  is  that  of  a  column 

24  ft.  long  and  2  sq.  ft.  in  cross-section,  or  24  x  2  or  48  cub.  ft. 

Since  1  cub.  ft.  of  water  weighs  62-4  lbs.,  the  mass  of  this  is 
48  X  62-4  lbs.  or  299-5  lbs.  This  mass  of  water  loses  24-8  or 
16  ft.  per  sec.  of  its  velocity.     So  the  momentum  destroyed  per 

er  sec. 

Undershot  water-wheel. 

Fig.  66  a. 

second  is  299-5x16  f.p. s.  units  or  4792  f. p. s,  units;  so  the 
force  exerted  on  the  wheel  is  4792  poundals,  or  148*5  lbs.  wt. 

It  is  important  to  note  the  difference  between  this  example 
and  the  last ;  here  we  have  a  succession  of  surfaces  against  which 

the  fluid  strikes,  instead  of  a  single  one,  and  the  quantity  of 
fluid  which  in  a  given  time  acts  on  the  body  to  which  the  surfaces 

are  attached  is  consequently  greater,  being  unaffected  by  the 
speed  of  the  individual  surfaces  because  the  body  does  not  itself 
move  forward  as  a  whole. 

Suppose  now  that  the  wheel  does  lighter  work,  so  that  the 

speed  of  the  paddles  is  increased  to  12  ft.  per  sec;  then  the 

force  along  the  circumference  of  the  wheel  can  be  calculated  as 



174  Chapter  VIII 

before  and  will  be  found  to  be  111 -4  lbs.  wt.  ;  so  the  force  is 
reduced  as  the  speed  of  the  wheel  increases.  It  would  of  course 

be  zero  if  the  paddles  moved  as  fast  as  the  oncoming  water. 
But  it  does  not  follow  that  the  whfiel  is  less  efficient  for  its 

purpose  when  its  speed  is  higher  ;  we  want  the  wheel  to  do  work, 

and  its  "  power,"  or  the  rate  at  which  it  does  work,  depends  on 
the  speed  and  force  combined.  It  is  obvious  that  the  force  is 

greatest  when  the  speed  is  nothing,  and  that  the  speed  is  greatest 

when  the  force  is  nothing,  but  in  neither  case  does  the  wheel  do 

any  work  at  all ;  so  the  power  probably  increases  to  a  maximum 

at  some  speed  and  then  decreases  again  to  zero.  This  can  be 

shown  to  be  the  case  by  calculating  the  power  at  various  speeds ; 

for  example,  at  a  speed  of  8  ft.  per  sec.  the  power  is  8  x  148*5 

ft.  lbs.  per  sec.  or  2 -16  h.p.,  and  at  12  ft.  per  sec.  it  is  12x111-4 

ft.  lbs.  per  sec.  or  2*25  h.p.;  a  curve  should  be  plotted,  having 

speeds  as  abscissae  and  horse-powers  as  ordinates,  and  it  will  be 

found  that  the  maximum  horse-power  is  obtained  when  the 

velocity  of  the  water  is  halved  on  passing  the  whefel. 

Ex.  4.  Find  the  horse-power  of  the  above  wheel  when  the  speed  of  the 
paddles  is  16  ft.  per  sec. 

*99.     Efficiency  of  an  undershot  water-wheel. 
We  will  next  obtain  a  general  expression  for  the  power  of  a  water-wheel 

of  this  kind.  Call  the  speed  of  the  water  before  reaching  the  wheel  V  ft. 

per  sec,  its  area  of  cross-section  A  sq.  ft.,  the  speed  of  the  paddles  and  of 
the  water  after  passing  them  v  ft.  per  sec.  Then  the  volume  reaching  the 

wheel  in  1  sec.  is  ̂ F  cub.  ft.,  so  its  mass  is  62-4  x^F  lbs.  ;  hence  its 

momentum  is  62-4  x^FxF  f.p.  s.  units  before  reaching  the  wheel  and 
62  -AA  Vv  f .  p.  8.  units  after  passing  it ;  hence  the  momentum  destroyed  in 
1  sec.  is  62'4:AV(V-v)  f.p.  s.  units,  and  the  force  on  the  wheel  is 
62'4^F(F-t;)  poundals.  In  1  sec.  the  circumference  of  the  wheel  moves 
V  ft.,  so  the  work  done  is  62-4 AV  (V -  v)  v  ft. -poundals  in  1  sec. 

The  total  kinetic  energy  possessed  by  the  62-4  x  ̂   F  lbs.  of  water  before 
reaching  the  wheel  was  ̂   x  62*4  xAVxV^  ft. -poundals,  so  the  fraction  of  the 

energy  extracted  by  the  wheel  from  the  water,  or  its  "  efficiency,"  is 

62-4x^F(F-^)t;       2{V-v)v 

i62-4  xAVx  F2^  °^         F2        * 
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In  particular  if  v  =  ̂ V,  the  efficiency  becomes  |;  and  this  speed  of  the 
wheel  gives  the  maximum  efficiency.     For  let  the  speed  of   the  wheel  be 

— +  a;  ft.  per  sec,  then  the  efficiency  becomes 

^[-a-)][-H..<?-0 

2^2 

  Jr.      or         -     y,       '    OV^-y^; 
whether  x  is  positive  or  negative  this  value  is  less  than  the  value  of  the 
efficiency  when  x  is  zero  (i.e.  |). 

So  an  undershot  water-wheel  cannot  extract  more  than  half  of  the  energy 
which  reaches  it. 

100.  Pressure  exerted  by  a  stream  striking  a  flat 

surface  obliquely.  If  a  stream  of  fluid,  instead  of  striking 

the  fixed  surface  at  right  angles  to  it  as  described  in  Art.  95, 

Fig.  67. 

strikes  it  obliquely,  we  can  calculate  the  pressure  it  exerts  on  a 

square  foot  of  the  surface  by  applying  the  same  principles.  An 
instance  of  this  is  a  kite,  held  by  its  string  in  a  wind ;  suppose 
Fig.  67  shows  a  section  of  it  perpendicular  to  the  plane  of  the 

kite.  Call  the  inclination  of  the  kite  to  the  horizontal,  a° ; 
suppose  the  wind  is  blowing  horizontally  at  v  ft.  per  sec. 
Consider  a  particle  of  air  striking  the  kite  ;  after  hitting  it,  we 

assume  that  it  slides  without  friction  along  the  surface,  so  that 
it  loses  the  component  of  its  speed  perpendicular  to  the  kite ;  and 
we  are  not  concerned  with  changes  in  the  component  parallel  to 

the  surface,  for  these  cannot  produce  any  pressure  on  the  surface. 
So  the  effect  on  the  kite  is  the  same  as  if  it  were  in  a  wind 
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blowing  perpendicular  to  it  at  a  speed  equal  to  the  component  of 

the  actual  speed  of  the  wind  perpendicular  to  the  kite,  and  the 

pressure  on  a  square  foot  of  the  kite  can  be  found  as  in  Art.  95 ; 

it  is  V  sin  a  x  1  x  -OSOT  x  v  sin  a  or  '0807  5?  %^  sin^  a  poundals,  since 

the  wind's  speed  perpendicular  to  the  kite  is  v  sin  a  ft.  per  sec. 
This  general  expression  is  of  use  in  giving  a  rough  approxi- 

mation to  the  pressure  per  square  foot  of  a  kite,  the  sail  of  a 

fore-and-aft  rigged  boat,  or  an  aeroplane.  In  the  case  of  the 

aeroplane,  if  it  is  travelling  through  still  air,  we  merely  sub- 

stitute its  speed  for  that  of  the  wind  in  the  above  ;  for  the  only 

difference  between  it  and  the  kite  is  that  it  generates  the 

momentum  perpendicular  to  its  surface  instead  of  destroying  it. 

If  there  is  a  head  wind  and  the  aeroplane  is  flying  horizontally, 

we  must  add  together  the  speed  of  the  aeroplane  and  of  the  wind 

to  get  -y,  and  so  on. 
In  order  to  find  the  lifting  force  per  square  foot  of  the  plane 

we  must  take  the  vertical  component  of  the  pressure  on  a  square 

foot,    that   is     X  cos  a   lbs.    wt.       The    horizontal 
9 

•  +          .    .u          .•       •    •0807xi;2sin3a,,  ,  
„. resistance  to  the  motion  is   —    lbs.  wt.  per  sq.  it. 

g 

Bx.  5.  Find  a  rough  value  for  the  lifting  force  per  square  foot  of  an 
aeroplane  travelling  horizontally  at  75  miles  an  hour  through  j;he  air,  when 

the  planes  are  set  at  an  angle  of  12°  to  the  horizontal. 

Ex.  6.  If  the  total  weight  to  be  supported  by  the  aeroplane  is  1000  lbs., 
what  must  be  the  area  of  the  planes  ? 

Ex.  7.  Find  the  horizontal  force  per  sq.  ft.  needed  to  propel  the 
aeroplane. 

Ex.  8.     Find  the  horizontal  force  needed  to  propel  the  aeroplane. 

Ex.  9.     Find  the  work  done  in  propelling  the  aeroplane  through  110  ft. 

Ex.  lO.     Find  the  horse-power  spent  in  propelling  the  aeroplane. 

The  expressions  found  in  Arts.  95  and  100  for  the  wind 

pressures  on  a  flat  plane  give  values  about  twice  those 

found  in  practice,   because   the   air   does   not   actually    behave  i 
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exactly  as  we  assumed.  The  value  of  the  pressure  in  lbs.  per 
sq.  ft.  when  the  wind  strikes  the  plane  at  right  angles  may  with 

considerable  accuracy  be  calculated  from  the  formula  -0029  x  V% 
where  V  is  the  relative  speed  of  the  plane  and  air  in  miles  per 
hour ;  when  the  plane  is  inclined  at  an  angle  a  to  the  direction 

of  the  wind,  the  best  formula  for  the  pressure  is  ^t^ 

The  corresponding  formulae  arrived  at  in  Arts.  95  and  100  are  fr 
•0054  X  V^  and  -0054  x  V'  sin  a. 

The  values  found  from  either  of  these  expressions  in  the  last 

set  of  examples,  for  the  lifting  power,  etc.  of  an  aeroplane  are 
fortunately  not  those  necessary  in  practice,  for  the  planes  are 

made  arched,  like  a  bird's  wing,  and  not  flat.  This  enormously 
increases  the  lifting  power  per  sq.  ft.  at  a  given  speed,  and 
reduces  the  power  spent  in  propelling.  For  example,  in  a 

Bleriot  monoplane  carrying  a  passenger,  a  weight  of  about 
1000  lbs.  is  carried  by  an  area  of  260  sq.  ft.  (cf.  Ex.  6),  at  a 

speed  of  only  42  miles  an  hour  (cf.  Ex.  5),  with  a  50  h.p.  motor. 
But  the  calculations  we  have  made  serve  to  illustrate  the 

principles  and  to  show  how  we  can  arrive  at  rough  values  of 

the  lifting  capacity,  etc.  of  an  aeroplane  by  simple  calculations. 

101.  The  case  of  a  sailing  boat  is  not  quite  so  simple.  Let 
AB  represent  the  sail,  making  an  angle  0  with  the  centre  line  of 

the  boat  and  suppose  that  the  boat  is  moving  forwards  at 

a  speed  of  V  ft.  per  sec.  (we  neglect  any  broadside  movement, 

i.e.  we  assume  there  is  no  "  leeway  ").  Suppose  that  the  wind 
has  a  speed  of  v  ft.  per  sec,  and  comes  at  an  angle  of  a  with  the 
centre  line,  before  the  beam. 

Then  the  speed  of  the  sail  in  a  direction  perpendicular  to 
itself  is  Fsin  0  ft.  per  sec,  and  the  component  speed  of  the  wind 

in  this  direction  is  v  sin  (a—  0)  ft.  per  sec.  Hence  the  pressure 
per  sq.  ft.  of  the  sail  is  the  same  as  if  it  were  at  rest  in  a  wind 

blowing  at  right  angles  to  it  at  a  speed  of  v  sin  (a  —  ̂ )  —  V  sin  0 
A.  12 



178  Chapte}^  VIII 

ft.  per  sec.     Hence  as  before  the  pressure  on  a  sq.  ft.  of  the  sail 

is  -0807  {v  sin  {a-e)-V  sin  Of  poundals. 
The  force  per  sq.  ft.  of  sail  area  which  is  effective  in  driving 

the  boat  forward  is  the  component  of  this  force  in  that  direction, 

or  -0807  {v  sin  (a  -  ̂ )  -  V  sin  Of  sin  0  poundals. 

V  ft.  per  sec 

Fig.  68. 

Ex.  11.  If  the  wind  is  abeam  (i.e.  a  =  90°)  and  blowing  at  5  miles  an 
hour  and  the  sail  is  set  at  an  angle  of  30°  with  the  centre  line  of  the  boat, 
show  that  the  wind  will  urge  the  boat  forward  even  when  the  boat  is 
travelling  at  7  miles  an  hour,  i.e.  faster  than  the  wind.  (To  prove  this,  it  is 

only  necessary  to  show  that  v  sin  (a  -  6)  is  greater  than  V  sin  6. ) 

Ex.  12.  Calculate  the  force  per  sq.  ft.  of  sail  area  which  is  effective  in 
driving  the  boat  forward,  in  the  instance  given  in  Ex.  11. 

Ex.  13.  Repeat  Ex.  12,  but  taking  the  sail  at  an  angle  of  20°  with  the 
centre  line  of  the  boat. 

Ex.  14.  Repeat  Ex.  12,  for  an  angle  of  35°  with  the  centre  Hne ;  which 
of  these  angles  is  the  most  effective  ? 

102.     Pressure  of  a  jet  of  fluid  on  a  curved  surface. 

Both  steam  and  water  turbines  are  actuated  by  the  pressure 
produced  by  a  jet  of  fluid  on  a  solid  surface  as  in  an  undershot 

water-wheel,  but  this  surface  is  curved,  not  plane,  and  the  jet  of 
fluid  is  directed  so  that  it  slides  on  to  the  surface  along  a  tangent 
to  it,  instead  of  striking  it  at  an  angle ;  the  stream  of  fluid  is 

afterwards  deflected  gradually  by  the  shape  of  the  surface.  In 

this  way  "  shock "  is  avoided  and   the  momentum  of  the  fluid 
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is  changed  gradually  and  smoothly,  thus  preventing  the  forma- 
tion of  eddies,  which  waste  energy. 

For  example,  suppose  a  jet  of  water  whose  cross-section  is 
1  sq.  in.,  moving  at  a  speed  of  40  ft.  per  sec,  meets  a  fixed 

curved  surface  as  shown  in  Fig.  69  ;  it  will  retain  its  speed  un- 
changed, if  we  neglect  friction,  because  there  is  no  force  in  the 

direction  of  its  motion  to  change  it ;  but  the  direction  of  that 
motion  is  changed. 

Its  velocity  at  exit  can  be  resolved  into  two  components 

(found  by  trigonometry  or  a  scale  drawing),  one  of  40  cos  60°  or 
20  ft.  per„sec.  forward  (i.e.  in  its  original  direction),  and  one  of 

40  sin  60°    or    34*6    ft.    per    sec.    perpendicular   to    its    original 

Fig.  69. 

direction.  So  there  is  a  change  of  velocity  of  40  —  20,  or  20  ft. 

per  sec.  in  the  former  direction,  and  one  of  34*6  ft.  per  sec.  in 
the  latter  direction.  Now  the  volume  of  water  dealt  with  in 

1  sec.  is  yi^  X  40  cub.  ft.,  and  the  mass  is  yj^  x  40  x  62*4  or 
17-3  lbs.,  so  the  changes  of  momentum  are  respectively  17'3  x  20 
f.p.  s.  units  and  17  "3  x  34*6  f.  p.  s.  units.  Hence  the  forces  on 

the  fixed  surface  are  17*3  x  20  or  346  poundals  in  the  direction 

of  the  jet  and  17*3  x  34*6  or  598  poundals  at  right  angles  to  it. 
From  these  we  can  if  we  wish  calculate  the  magnitude  and 
direction  of  the  resultant  force  on  the  fixed  surface. 

As  was  pointed  out  in  Art.   96,  we  can   only  make  use  of 
the  pressure  on  the  surface  if  the  surface  moves  in  the  direction 

12—2 



180  Chapter  VIII 

of  the  pressure.  We  will  work  out  the  same  case,  but  will 
assume  the  surface  to  move  with  a  speed  of  15  ft.  per  sec.  in  the 

direction  of  the  original  jet. 

When  the  water  enters  the  curved  sift-face  at  A  it  is  moving 
relatively  to  the  surface  at  a  speed  of  40-15,  or  25  ft.  per  sec. 
Now  imagine  yourself  to  be  standing  on  AB,  and  moving  with 

it ;  the  water  at  A  will  appear  to  you  to  move  at  a  speed  of 

25  ft.  per  sec,  and  as  the  surface  can  exert  no  force  on  the 
water  in  the  direction  of  flow  (for  we  assume  there  is  no  friction) 

this  speed  cannot  change ;  hence  it  flows  along  the  surface  at  B 

at  the  same  speed  of  25  ft.  per  sec.  But  coming  back  again  to  the 
fixed  surroundings  of  AB,  we  know  that  the  point  B  is  moving  to 

/5  ft.  per  se 

^0  ft. per  sec. 

Fig.  70. 

the  left  at  a  speed  of  15  ft.  per  sec;  so  the  water  as  it  emerges 
at  B  will  be  seen  to  have  two  velocities,  one  of  15  ft.  per  sec. 

in  the  original  forward  direction  and  one  of  25  ft.  per  sec.  in  a 

direction  inclined  to  it  at  60°.  Resolving  the  latter  into  com- 
ponents along  and  perpendicular  to  the  original  direction,  we 

find  these  to  be,  respectively,  25  cos  60°  or  12'5  ft.  per  sec,  and 
25  sin  60°  or  21-65  ft.  per  sec.  So  the  forward  speed  of  the 
water  at  exit  is  15  +  12 "5  or  27 "5  ft.  per  sec,  and  the  speed  at 
right  angles  to  the  original  jet  is  21*65  ft.  per  sec 

The  quantity  of  water  flowing  on  to  the  surface  in  one  sec  is 

j-J^  X  25  cub.  ft.,  so  its  mass  is  yi^  x  25  x  62-4  or  10*82  lbs. 

Now  the  decrease  of  the  water's  velocity  in  the  forward  direction 
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is  40  — 27*5  or  12'5  ft.  per  sec.  ;  hence  the  change  of  momentum 
in  that  direction  in  1  sec.  is  10*82  x  12*5  or  135'4  ft.  lb.  sec. 
units.  Hence  the  force  on  AB  in  the  direction  of  motion  is 

(see  Art.  85)  135-4  poundals.  Similarly  the  force  at  right 
angles  to  that  direction  is  10'82  x  21-65  or  234'5  poundals. 
These  values  should  be  compared  with  those  found  for  the  fixed 
surface. 

We  will  next  find  the  actual  velocity  of  the  water  at  exit. 

We  know  that  its  components  are  27-5  and  21  "65  ft.  per  sec.  at 
right  angles  to  one  another ;  compounding  these  we  get  for  the 
magnitude  of  the  resultant,  35  ft.  per  sec.  Hence  we  see  that 

when  the  surface  moves,  the  velocity  of  the  water  changes  its 

magnitude  as  well  as  its  direction.  This  must  clearly  be  the 
case,  because  the  water  exerts  a  pressure  in  the  direction  in 
which  the  surface  moves,  and  therefore  does  work  on  the  surface  ; 

this  must  extract  kinetic  energy  from  the  water  in  the  jet,  which 
must  therefore  lose  speed.  In  the  above  case  it  is  easy  to  verify 

that  the  loss  of  kinetic  energy  equals  the  work  done  on  the 
moving  surface. 

Ex.  15.     Calculate  the  work  done  in  one  second  on  the  surface  in  the 
case  given  above. 

Ex.  16.     Calculate  the  decrease  of  kinetic  energy  of  the  water  which 
passes  the  surface  in  one  second. 

103.  Use  is  made  of  the  arrangement  described  in  the  last 
Article,  in  turbines,  but  in  a  modified  form.  It  will  be  seen 

that  no  advantage  was  taken  of  the  pressure  on  the  surface  at 

right  angles  to  the  direction  of  the  jet ;  if  the  surface  is  per- 
mitted to  move  in  that  direction  also,  more  of  the  energy  of 

the  incoming  water  would  be  extracted.  But  if  the  surface  is 

allowed  to  move  in  this  latter  direction,  and  the  jet  remains 

as  it  is,  the  water  will  no  longer  enter  the  surface  tangentially. 
This  however  can  still  be  secured  by  pointing  the  jet  in  the 
direction  of  motion  of  the  surface,  more  or  less  according  to  the 
speeds  of  the  surface  and  the  jet,  as  in  Fig.  71. 
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Suppose  that  AB  \^  free  to  move  across  the  jet,  as  shown  in 

Fig.  71  (i)  with  a  velocity  of  v  ft.  per  sec,  and  that  the  velocity  of 
the  jet  is  V  ft.  per  sec.  The  velocity  of  the  water  relatively  to 
AB  is  (see  Art.  34)  found  by  drawing  the  triangle  of  velocities 

as  DEF'm  Fig.  71  (ii),  "subtracting"  v  from  V;  FE  represents 
in  magnitude  and  direction  the  velocity  with  which  the  water 
appears  to  move  as  seen  by  a  spectator  stationed  on  ̂ ^  and 
moving  with  it.  Hence  if  the  surface  is  shaped  so  that  its 
tangent  at  A  is  parallel  to  FE  the  water  will  enter  the  surface 
tangentially,  without  shock. 

Vft.per  sec. 

(ii) 
Fig.  71. 

AB  is^  curved  round  backwards  as  shown,  so  that  the  mo- 
mentum of  the  fluid  in  the  direction  of  v  is  destroyed  before  it 

emerges  at  B ;  work  is  thereby  done  on  AB,  and  a  corresponding 
amount  of  kinetic  energy  is  withdrawn  from  the  fluid,  which 
loses  speed  as  well  as  changing  its  direction  of  motion. 

But  this  will  only  be  true  for  a  very  short  time  ;  as  soon  as 
the  surface  has  moved  a  short  distance,  the  jet  will  no  longer 
strike  the  edge  of  the  surface,  but  will  reach  it  further  inwards. 

This  difficulty  is  overcome  by  arranging  a  series  of  such  surfaces 
to  pass  the  jet  one  after  another,  each  of  which  receives  the  jet 
for  a  very  short  time  and  is  then  shielded  by  the  one  which 

follows.     These  surfaces  (or  "  blades  ")  are  fixed  on,  and  project 
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radially  from,  the  rim  of  a  wheel,  which  as  it  rotates  brings  the 

surfaces  in  succession  past  the  jet ;  the  wheel  is  thereby  urged 
forwards  by  the  pressure  on  the  blades  attached  to  it.  Fig.  72 
gives  a  view  of  such  an  arrangement,  looking  at  it  in  the  plane 

of  the  wheel ;  the  blades  on  the  part  of  the  rim  immediately 

between  the  spectator  and  the  axle  of  the  wheel  are  seen  end-on 
(since  they  are  fixed  radially)  ;  these  are  the  only  ones  drawn  in 

StesLi 

Nozzle 

)      Axle    of 

Fig.  72. 

the  figure,  but  of  course  there  are  similar  blades  all  round  the 

rim.  If  more  power  is  required,  additional  jets  may  be  fixed  at 
other  points  of  the  rim. 

104.  De  Laval  Steam  Impulse  Turbine.  8team  may 
be  used  instead  of  water  in  the  turbine  described  in  the  last 

Article,  and  this  form  was  invented  by  Dr  De  Laval.  See 
Fig.  73.     Owing  to  the  small  mass  of  a  cubic  foot  of  steam,  it 
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will  have  a  very  small  momentum  unless  its  speed  is  very  great ; 

and  the  force  exerted  on  the  wheel  depends  directly  on  the 

change  of  momentum  of  the  fluid  as  it  passes  the  blades.  Now 

the  proportion  of  the  energy  of  the  incoming  fluid  which  is 

transferred  to  the  wheel  depends  on  the  relation  between  the 

speed  of  the  blades  and  the  speed  of  the  jet ;  the  proportion  is 

greatest  when  the  former  is  about  half  the  latter.     Hence  the 
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Fig.  73. 

speed  of  the  De  Laval  turbine  must  be  very  great  if  it  is  to  be 

at  all  economical ;  in  practice,  it  has  to  be  geared  down  before  it 

can  be  used  even  for  driving  dynamos,  which  run  at  high  speeds. 

Ex.  17.  The  speed  of  the  steam  in  the  jet  is  3000  ft.  per  sec,  and  it 

is  inclined  at  an  angle  of  20°  to  the  direction  of  motion  of  the  blades.  The 
blades  are  so  shaped  that  the  steam  on  emerging  from  them  moves  at  right 
angles  to  their  direction  of  motion.  Calculate  the  change  of  momentum,  in 
the  direction  of  motion  of  the  blades,  of  one  pound  of  steam. 
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Ex.  18.  If  -^  lb.  of  steam  flows  from  the  jet  in  Ex.  17  in  one  second, 
determine  the  force  exerted  on  the  blades  in  the  direction  of  motion. 

Ex.  10.  If  the  speed  of  the  blades  in  Ex.  18  is  1000  ft.  per  sec,  calculate 

the  work  done  on  the  wheel  per  sec.  in  ft. -lbs.,  and  hence  the  h.p.  of  the 
turbine. 

Ex.  20.  From  the  result  of  Ex.  19  calculate  the  loss  of  kinetic  energy 
of  5^^  lb.  of  steam.  Hence  determine  the  kinetic  energy,  and  hence  the 
speed,  of  the  steam  on  leaving  the  blades. 

Ex.  21.  Calculate  the  kinetic  energy  of  the  steam  passing  the  jet  in 
one  sec,  and  from  the  result  of  Ex.  20  deduce  the  efficiency  (Art.  99)  of  the 
turbine.     Compare  it  with  that  of  the  undershot  water-wheel  at  its  best. 

Ex.  22.    Eepeat  Exs.  19,  20  and  21  for  a  blade  speed  of  1500  ft.  per  sec. 

105.     Reaction  of  a  jet  of  water  on  the  pipe.    When 

a  shot  is  fired  from  a  gun,  the  gun  recoils ;  the  force  causing 

it  to  recoil  is,  by  Newton's  Third  Law,  equal  to  that  which 
generates  momentum  in  the  shot.  We  saw  in  Art.  94  that 

there  is  a  nearly  continuous  backward  pressure,  or  reaction,  on 
the  carriage  of  a  Maxim  gun.  We  should  expect  to  find  that 

there  is  a  similar  continuous  reaction  on  the  pipe  from  which 

a  jet  of  water  is  issuing,  since  momentum  is  being  continuously 
generated.  We  can  observe  this  reaction,  and  measure  its 

amount,  by  the  apparatus  represented  in  Fig.   74. 

A  is  a  metal  pipe  which  is  bent  at  a  right  angle,  and  sup- 
ported on  knife  edges  at  B,  ̂ o  that  it  is  free  to  swing  in  a 

vertical  plane ;  it  is  supplied  with  water  V)y  a  long  flexible 
rubber  tube  (7,  and  the  water  issues  in  a  horizontal  jet.  A 

spirit  level  is  mounted  on  the  horizontal  part  of  A  to  show 

when  the  jet  is  horizontal.  If  the  tube  is  hanging  upright  and 
the  water  is  then  turned  on,  it  will  swing  backwards  and  an 
appreciable  force  will  be  needed  to  bring  it  back  to  its  upright 
position  and  hold  it  there.  This  force  can  be  determined  by 

attaching  a  string  to  the  tube,  as  shown  in  the  diagram,  and 
adding  weights  until  the  spirit  level  shows  that  the  jet  is  once 
more  horizontal ;  then  the  moment  about  B  of  the  tension  of  the 

string  and  of  the  reaction  of  the  jet  must  be  equal,  so  the  latter 
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can  be  calculated  when  the  distances  from  B  at  which  these 
forces  act  have  been  measured.  The  mass  of  water  which  issues 

from  the  jet  in  a  second  can  be  determined  by  catching  the  water 

in  a  vessel  and  weighing  it.  After  issuing  from  the  nozzle  the 

water  follows  the  same  course  as  a  particle  projected  horizontally, 
so  its  horizontal  velocity  of  projection  can  readily  be  determined 

by  measuring  the  vertical  height  it  has  fallen  in  a  definite 
horizontal  distance.     From  these  measurements  we  can  determine 

Fig.  74. 

the  horizontal  momentum  generated  in  a  second  ;  while  the  water 
is  passing  through  the  vertical  part  of  A  it  has  of  course  no 

horizontal  momentum.  What  the  metal  tube  A  actually  does  is 
to  destroy  the  vertical  momentum  of  the  water ;  to  do  this  a 

force  is  needed,  but  this  force  acts  through  the  knife  edges  at  B^ 
and  so  does  not  tend  to  turn  the  tube  round  B ;  it  also  generates 
a  horizontal  momentum  in  the  water,  and  this  needs  a  force 

acting  along  the  horizontal  part  of  the  metal  tube,  which  is  what 
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we  have  been  measuring.     The  effect  on  the  tube  is  similar  to 
that  described  in  Art.  104. 

So  a  fireman  holding  the  nozzle  of  a  fire-hose  has  to  exert 

a  force  to  prevent  the  nozzle  from  moving  backwards  in  conse- 
quence of  the  reaction  at  the  first  bend  in  the  hose. 

Ex.  23.  In  the  above  experiment  the  following  rough  measurements  were 
made;  8  lbs.  of  water  were  collected  in  15  sees.,  and  the  water  was  observed 
to  fall  through  a  vertical  distance  of  21  inches  in  a  horizontal  distance  of 
11  feet.  The  distance  of  the  jet  from  B  was  46  ins,  and  of  the  string  from  B 

was  32  ins.  ;  the  weight  in  the  pan  was  -81  lb.  wt. 
If  we  denote  the  horizontal  velocity  of  the  water  by  v  ft.  per  sec. ,  then  the 

time  in  which  it  travels  a  horizontal  distance  of  11  ft.  is  —  sees. ;  so  it  falls V 

vertically  through  21  ins.  or  1*75  ft,  in  —  sees.     Its  vertical  velocity  at  the 

end  of  —  sees,  is  — x32-2  ft,  per  sec,  so  its  average  vertical  velocity  is 

jr-  X  32-2  ft.  per  sec. ;  hence  in  —  sees,  it  will  fall  through  ̂ r-  x  32-2  x  —  ft. 

„  .         11     ̂ ^^,     11     ,  ̂.         .,     11x32-2x11  _..^ Hence  we  have  ̂ r- x  32-2  x —  =  l-7o  or  v-=     -:^-^„^      or  v  =  33-4  ft.  per  sec. '2v  V  2  X 1-75 
Now  the  mass  of  water  which  in  each  second  receives  this  horizontal 

velocity  is  y\  ,  or  '533  lb. ;  so  the  horizontal  momentum  generated  in  1  sec. 
is  '533  X  33*4  f.p.s.  units,  or  17'8f.p.s,  units.  Hence  the  reaction  should 
be  17'8  poundals,  or  "553  lb.  wt. 

The  moment  about  B  of  the  force  (-81  lb.  wt.)  along  the  string  is 
•81  X  f  I  lbs.  wt.  ft. ;  if  F  lbs.  wt.  be  the  reaction  of  the  jet  on  the  tube,  the 
moment  about  B  of  this  force  is  Fx  \%  lbs,  wt.  ft. ;  hence  F  x  \%=  -81  x  J|, 
or  F=-563  lb.  wt.  This  value  of  the  reaction  is  approximately  what  was 
found  by  considering  the  rate  at  which  momentum  was  generated. 

106.  Reaction  Motors.  We  can  now  understand  the 

working  of  sundry  toys,  which  date  back  to  early  Egyptian 

times,  for  producing  motion  by  the  reaction  of  issuing  jets  of 

fiuid.  Fig.  75  gives  a  plan  of  the  simplest  of  these ;  A  is  a  can 

of  water,  free  to  turn  on  a  central  vertical  axle ;  tubes  B, 

B  emerge  horizontally  from  the  can,  and  a  hole  is  made  as  shown 

in  each  tube.  From  these  holes  jets  of  water  emerge,  and  the 
reaction  drives  the  can  round  on  its  axle.     It  will  be  seen  that 
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the  jets  need  not  strike  any  fixed  object;  for  the  driving  force 
is  caused  by  the  generation  of  momentum  in  the  water.  A 
similar  effect  will  be  produced  by  allowing  steam  instead  of 
water  to  escape  from  the  holes.  It  is  %  similar  reaction  which 

causes  a  rocket  to  fly. 

Another  toy  depending  on  the  same  principle  is  a  model 

boat  containing  a  boiler;  the  steam  is  taken  in  a  pipe  to  the 
stern  and  there  discharged  horizontally  backwards  from  a  nozzle. 
The  reaction  drives  the  boat  forward.  Here  we  have  a  store  of 

steam  in  the  boiler  at  high  pressure;  the  "pressure  energy"  of 
this  steam  is  allowed  to  convert  itself  into  kinetic  energy  by 
expanding  freely  at  the  nozzle ;  so  a  certain  amount  of  backward 

i 

'•I 

«  I'l 

•  Fig.  75. 

momentum  is  continually  created  within  the  moveable  vessel,  with 
the  consequence  that  there  is  a  force  which  drives  the  vessel 
forwards. 

It  should  be  noted  that  in  all  these  cases  the  speed  with 

which  the  fluid  leaves  the  vessel  must  be  greater  than  the 
backward  speed  of  the  vessel  itself;  for  otherwise  there  would 

be  no  actual  momentum  generated  relatively  to  the  body  which 

is  resisting  the  vessel's  motion,  so  no  force  of  reaction  would  be 
available  to  overcome  this  resistance. 

107.  Propulsion  of  Ships  and  Aeroplanes.  Ad- 
vantage is  taken  of  this  reaction  when  we  wish  to  make  a  body, 

such  as  a  ship,  move  forward  in  the  fluid  in  which  it  floats.  A 

railway  train  is  propelled  by  the  friction  between  the  rails  and 
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the  driving  wheels,  but  friction  is  not  used  in  propelling  ships ; 
the  friction  of  the  water  is  merely  a  hindrance,  not  a  help. 

Speaking  broadly,  the  ship  seizes  masses  of  water  from  the  still 
water  near  it  and  hurls  them  backwards ;  the  production  of  this 

backward  momentum  causes  a  reaction  which  drives  the  ship 
forward,  not  because  the  water  thus  set  in  motion  afterwards 

hits  against  a  fixed  body  or  presses  against  the  surrounding 

water,  but  because  the  mere  setting  in  motion  of  this  water  by 

itself  produces  a  reaction  on  the  body  which  has  set  it  in  motion. 

The  same  applies  to  aeroplanes,  substituting  air  for  water. 
The  method  of  propelling  a  ship  which  is  theoretically  the 

most  perfec"  consists  in  taking  in  water  through  a  wide  orifice 
at  the  bows  of  the  ship,  passing  it  through  a  pump  driven  by  the 

^MZ^///////////////////////i^' Fig.  76. 

engines,  which  gives  it  considerable  speed,  and  sending  the  narrow 

jet  of  water  so  produced  directly  astern,  either  above  or  below 

water  level.  This  has  been  done  on  a  large  scale  for  experimental 
purposes,  but  did  not  prove  so  efficient  as  propellers;  H.M.S. 

" Waterwitch,"  a  vessel  of  1160  tons;  was  fitted  with  pumps 
employing  about  700  h.p.,  delivering  roughly  150  cub.  ft.  of 

water  per  second,  and  attained  a  speed  of  9*3  knots.  The  chief 
practical  difficulty  is  that  pumps  of  a  reasonable  size  cannot  deal 

with  a  very  large  body  of  water  in  a  second,  so  that  to  produce 
the  necessary  momentum  the  speed  given  to  the  water  must  be 
high,  and  water  at  high  speed  easily  loses  energy  in  eddies;  a 
similar  vessel,  with  the  same  h.p.  and  displacement,  fitted  with 

twin  screws,  acted  on  more  than  2000  cub.  ft.  of  water  per  second, 

and  could  thus  produce  the  same  reaction  by  giving  to  the  water 
a  much  smaller  speed. 
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Ex.  24.  In  H.M.S.  "  Waterwitch "  the  total  area  of  cross-section  of  the 
jets  by  which  the  water  was  discharged  was  6-28  sq.  ft.  The  ship  moved  at 
a  speed  of  9*3  knots,  or  15-7  ft.  per  sec.  Assume  that  the  water  enters  the 
inlet  orifices  without  acquiring  any  speed,  i.e.  at  a  speed  of  15-7  ft.  per  sec. 
relatively  to  the  ship ;  and  that  the  pumps  increase  this  speed  to  29  ft.  per  sec. 
relative  to  the  ship.  Calculate  the  volume  of  water  issuing  in  1  sec.  from 
the  orifices  at  the  stern ;  hence  find  the  change  of  momentum  in  the  water 
and  the  propelling  force  on  the  ship. 

Calculate  also  the  area  of  cross-section  of  the  pipe  leading  from  the  inlet 
orifices  to  the  pumps. 

108,  Both  paddle  wheels  and  screw  propellers  act  by  giving 

a  backward  momentum  to  water  which  was  previously  at  rest, 

and  the  momentum  generated  in  a  second,  expressed  in  foot- 

pound-second units,  is  equal  to  the  force  in  poundals  with  which 
the  ship  is  urged  forwards.  The  stream  of  water  driven  stern  ward 

from  the  propeller  is  called  "the  race  of  the  propeller";  it  is 
roughly  speaking  a  cylindrical  column  of  water,  of  the  same 

diameter  as  the  propeller,  moving  backwards  through  the  un- 

disturbed water.  The  propeller  does  not  "screw-"  its  way 
forwards  through  the  water  as  if  it  were  solid,  nor  do  paddle 

wheels  act  like  the  wheels  of  a  traction  engine;  it  is  only  by 

"slipping"  in  the  water  (and  thus  departing  from  the  way  it 
would  behave  if  the  water  were  a  solid)  that  the  propeller,  or 

paddle  wheel,  can  project  water  backwards  and  so  urge  the  ship 

forwards.  Similarly  if  the  propeller  is  situated  in  the  front  of  an 

aeroplane,  the  pilot  sits  in  a  stream  of  air  which  moves  past  him 

more  rapidly  than  does  the  undisturbed  air  through  which  the 

aeroplane  is  travelling.  He  experiences  the  same  eftect,  but  to 

a  smaller  extent,  if  the  propeller  is  behind  him,  for  air  flows  in 

from  all  directions  to  take  the  place  of  that  which  is  projected 

backwards  by  the  propeller. 

We  can  calculate  roughly  the  value  of  the  force  urging  the  ship 

forwards,  and  the  work  required,  when  we  know  the  dimensions 

and  speed  of  the  race  and  the  speed  of  the  ship  through  the 

water;  but  we  must  make  many  assumptions  that  cannot  be 

realised  in  practice,  so  our  result  will  only  be  an  ideal  to  which 
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the  shipbuilder  may  aspire.  Call  the  area  of  cross-section  of  the 
race  of  the  propeller,  A  sq.  ft.,  the  speed  of  the  ship  V  ft.  per  sec, 

and  the  speed  of  the  race  relatively  to  the  ship  v  ft.  per  sec;  i.e. 

to  a  passenger  the  undisturbed  sea  appears  to  be  moving  back- 
wards at  V  ft.  per  sec,  and  the  water  in  the  wake  of  the  ship  at 

V  ft.  per  sec.  The  actual  speed  of  the  water  in  the  race  will  be 

v—  F  ft.  per  sec  Then  in  1  sec.  a  volume  of  water  Av  cub.  ft.  is 

acted  on  by  the  propeller,  for  the  cylinder  of  water  which  leaves 

it  in  a  second  is  v  ft.  long.  The  mass  of  this  water  is  64  x  Av  lbs., 

since  1  cub.  ft.  of  sea-water  weighs  64  lbs. ;  the  velocity  given  to 

it  by  the  propeller  is  -y  —  F  ft.  per  sec,  so  the  momentum  generated 

per  sec.  will  be  64  x  Av{v  —  V)  f.p.s.  units ;  hence  the  reaction  on 

the  ship  is  64  x  Av{v-  V)  poundals  or  x  Av  (v  —  V)  lbs.  wt., 

32*2 
or  2^v('y-  V)  lbs.  wt.  very  nearly. 

It  may  be  of  interest  to  note  that  in  ordinary  steamers  A  is 

about  one-third  of  the  immersed  midship  section  of  the  ship. 

Ex.  25.  To  get  some  idea  of  what  these  speeds  and  pressures  are  in 

practice,  take  the  following  rough  figures  for  H.M.S.  "Drake,"  which  is 
a  twin-screw  cruiser  of  14,000  tons.  She  has  a  beam  of  71  ft.  and  draws 
28  ft.  fully  loaded ;  each  of  her  propellers  may  be  taken  as  having  a  radius 

of  9  ft.  (the  actual  radius  is  9  ft.  6  in.,  but  the  "boss"  in  the  centre  makes 
part  of  this  useless).  Hence  A,  the  area  of  cross-section  of  the  race  of  the 

two  propellers  together  may  be  taken  as  2  x  tt  x  9''^  sq.  ft.,  or  roughly  500  sq. 
ft.  It  is  found  by  observation  and  calculation  that  to  tow  her  at  10  knots 
requires  a  force  of  3200  lbs.  wt.,  and  at  20  knots  a  force  of  25,200  lbs.  wt. ; 
these  then  are  the  thrusts  of  the  propellers  when  she  is  steaming  at  these 

speeds.     (A  knot  is  a  speed  of  one  sea-mile,  or  6080  ft.,  in  an  hour.) 

A  speed  of  10  knots  is  — — ^-    ft.  per  sec,  or  17  ft.  per  sec.  nearly;  so 

20  knots  is  34  ft.  per  sec. 
If  we  substitute  these  numbers  for  A  and  V  in  the  expression  for  the 

reaction  on  the  propeller,  we  get 

3200  =  2  x500y(i?- 17), 

whence  we  find  u  =  17*18  ft.  per  sec.  when  the  speed  of  the  ship  is  10  knots. 
So  the  "race  of  the  propeller  "  only  moves  at  a  speed  of  17-18  -  17,  or  -18  ft. 
per  sec,  or  about  an  eighth  of  a  mile  an  hour,  backwards  through  the 
undisturbed  water. 
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At  a  speed  of  20  knots  we  have  25,200  =  2  x  500?;  {v  -  34),  whence  we  find 

v  =  34'73  ft.  per  sec.  Hence,  to  produce  this  speed  in  the  ship  the  race 
of  the  propeller  moves  through  the  undisturbed  water  at  a  speed  of 

34*73-34  or  •73  ft.  per  sec,  or  four  times  as  fast  as  before. 
These  speeds  should  be  contrasted  with  the  corresponding  speed  of 

the  "race"  in  H.M.S.  "  Waterwitch,"  which  for  9*3  knots  was  13-3  ft.  per  sec. 
(see  Ex.  24). 

Ex.  26.  Taking  the  aeroplane  of  Ex.  5  in  Art.  100,  and  assuming  that 

the  propeller  has  a  radius  of  3  ft.,  we  have  ̂ =7rx3^  or  28-27  sq.  ft., 
F^llO  ft.  per  sec.  Since  1  cub.  ft.  of  air  weighs  -0807  lb.,  we  get  as  above, 
since  the  required  horizontal  thrust  is  212-7  lbs.  wt. •0807 

-^  X  28-27V  {v  -  110)  =  212-7. 

From  this  ?;  =  132-6  ft.  per  sec.     So  the  wake  of  the  propeller  has  to  move 
backwards  through  the  still  air  at  about  15  miles  an  hour. 

*109.  Parsons^  Steam  Turbine.  The  Parsons  turbine 

is  now  so  widely  used   that  it  is   important  to  understand  its 

G^ 
B 3e: 

■F=tr 
Qv 

Fig.  77. 

principle  of  action,  at  any  rate  in  rough  outline;  and  it  forms 
a  very  good  illustration  of  the  reaction  caused  by  the  generation 
of  momentum. 

Broadly  speaking,  it  consists  of  a  tixed  cylindrical  casing  A 
(Fig.  77) ;  into  one  end  steam  is  admitted  from  the  boiler,  and 

from  the  other  end  the  steam  passes  away  to  the  "  exhaust "  after 
it  has  lost  its  high  pressure.     Inside  this  casing  and  concentric 
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with  it  is  a  drum  B,  whose  diameter  is  about  6  inches  less  than 

^'s;  this  drum  is  mounted  on  a  central  shaft  C,  with  which  it 
can  turn.  The  shaft  conveys  the  power  to  the  dynamo  or  propeller 
etc.  which  the  turbine  has  to  drive.  The  steam  flows  from  one 

end,  F,  of  the  turbine  to  the  other,  G,  along  the  space  between 

drum  and  casing,  and  in  so  doing  has  to  work  its  way  among  a 
number  of  blades  which  reach  nearly  across  this  space.  The 
blades  are  arranged  in  parallel  rows,  fixed  alternately  to  the 

casing  and  the  drum ;  the  plane  of  each  row  is  perpendicular  to 
the  axle ;  each  blade  in  one  row  D  is  fixed  by  one  end  to  the 

casing  and  projects  radially  inwards,  nearly  touching  the  drum ; 
the  blades  in  the  next  row  E  are  fixed  to  the  drum,  and  project 

radially  outward,  nearly  touching  the  casing.  The  blades  in  any 

one  row  are  spaced  apart  at  a  small  distance,  thus  providing 
channels  between  them  by  which  the  steam  can  pass  the  row 
of  blades ;  if  we  imagine  the  casing  to  be  transparent  and  look 
through  it  towards  the  central  shaft,  we  shall  be  looking  end  on 

along  the  blades,  and  those  two  successive  rows  will  appear 
somewhat  as  shown  in  Fig.  79.  Only  a  few  are  shown  here,  but 
each  row  extends  round  the  whole  circumference. 

Fig.  78  is  a  general  view  of  a  turbine,  with  the  upper  part 
of  the  casing  removed. 

When  the  turbine  is  running  and  doing  work,  the  pressure 
of  the  steam  drops  as  it  passes  through  each  row  of  blades,  falling 
step  by  step  from  the  high  pressure  at  the  boiler  end  to  the  low 

pressure  of  the  exhaust.  For  simplicity  we  will  assume  that  the 
turbine  is  so  designed  that  there  is  a  drop  of  pressure  at  each 
row  of  1  lb.  per  sq.  in.  Consider  what  happens  to  the  steam  in 
passing  through  the  channels  between  the  blades  of  a  row  fixed 

to  the  casing.  Suppose  that  on  coming  to  this  row  it  is  at  a 

pressure  of  100  lbs.  per  sq.  in.  On  emerging  from  the  channels, 

the  pressure  is  only  99  lbs.  per  sq.  in.;  this  excess  of  pressure 
behind  causes  an  acceleration  of  the  steam  in  the  channels,  which 

will  emerge  at  a  speed  about  half  as  fast  again  as  on  entering 

these  channels.  In  addition  to  this  change  of  magnitude,  the 
direction  of  the  velocity  has  been  gradually  deflected,  owing  to 
A.  13 
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the  shape  of  the  channels  (see  Fig.   79)  until  it  is  inclined   at 

a  small  angle  (say  20°)  to  the  face  of  the  row  of  blades.     Each 
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of  these  channels  therefore  acts  like  a  jet  of  the  de  Laval  turbine 

(p.  184). 
It  now  enters  the  next  row  of  blades,  which  is  fixed  to  the 

drum  and  therefore  moves  with  it ;  as 

in  the  de  Laval  turbine  this  moving  I 

row  of  blades  extracts  some  of  the      ̂  
kinetic  energy  which  the  steam  has  ,^^^^  _     ̂  
gained  in  passing  through  the  fixed 

row.  But  the  channels  in  this  ̂ ^^^  /X^^P^^ moving  row  are  curved  backwards  ̂ ^  ̂   F^S\  ̂  
at  their  exit  end  more  than  at  their 

entrance  end  (compare  Fig.  79  with 

Fig.  72).  The  consequence  of  this  is 
that  there  is  a  greater  change  in  the 
direction  of  motion  of  the  steam  than 

in  the  de  Laval  turbine;  instead  of      f^o^iJ,^ po^v.      Fixed  Row 
the  steam  emerging  at  right  angles  p.     ̂ ^ 
to  the  face  of  the  row,  it  is  directed 
backwards.  Thus  there  is  a  greater  change  in  the  momentum  of 

the  steam  and  consequently  a  greater  force  of  reaction  on  the 

moving  blades.  Hence  more  work  is  done  on  the  blades,  and  so 
more  energy  is  drawn  from  the  steam.  This  would  reduce  the 

speed  of  the  steam  too  much,  but  for  the  difference  of  pressure 
between  the  faces  of  the  moving  row,  which  causes  an  acceleration 

of  the  steam  in  these  channels.  The  shape  of  the  blades  is 

arranged  so  that  this  drop  of  pressure  shall  bring  up  the  speed 

to  exactly  what  it  was  on  entering  the  preceding  fixed  row. 
Another  row  of  blades  fixed  to  the  casing  is  arranged 

immediately  after  the  moving  row,  to  take  the  steam  as  it 
emerges  from  it ;  then  another  row  of  blades  fixed  to  the  drum, 

and  so  on.  Each  pair  of  rows  passes  the  steam  on  to  the  next, 

with  a  drop  of  pressure  of,  say,  2  lbs.  to  the  sq.  in.,  but  moving 

with  a  velocity  the  same  in  magnitude  and  direction  as  it  had  on 

entering  the  first  pair,  until  finally  the  steam  emerges  from  the 

turbine  at  a  low  pressure,  having  surrendered  nearly  all  its  energy 
to  the  drum. 

13—2 
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*110.  Thus  although  there  is  a  perfectly  free  channel  for 
the  steam  from  one  end  of  the  turbine  to  the  other,  the  direction 

of  flow  of  the  steam  is  continually  being  changed,  and  as  the 
speed  is  high  this  involves  a  considerable  change  of  momentum ; 

consequently  there  is  a  reaction  on  the  walls  of  the  passages  in 
which  the  direction  of  flow  is  changed,  as  in  the  pipe  in  Art.  105. 
So  the  steam  does  work  on  the  moving  drum  of  the  turbine  as 

much  as  if  it  were  shut  up  in  the  cylinder  of  a  reciprocating 
engine,  where  it  does  work  by  forcing  out  the  piston.  We  may 
regard  it  in  the  engine  as  using  its  high  pressure  by  thrusting 

against  the  piston,  getting  its  "push  off"  from  the  solid  end  of 
the  cylinder,  and  in  the  turbine  as  using  its  high  pressure  to  get 

up  speed  in  itself,  having  no  piston  or  other  impediment  to  check 

its  forward  speed,  and  getting  its  "  push  off"  from  the  wall  of  the 
curved  channel  in  which  it  is  flowing.  When  it  gets  up  this 

speed  in  the  channels  of  a  fixed  row,  the  reaction  on  the  wall  is 

of  no  service,  since  it  is  fixed ;  but  it  carries  its  kinetic  energy 
on  to  the  moving  row  and  surrenders  it  there,  by  having  its 

momentum  destroyed  in  the  impact  against  the  blades ;  this 
drives  them  forward  as  in  an  impulse  turbine.  When  it  gets 

up  speed  within  the  channels  of  a  moving  row,  since  these 
channels  are  directed  backwards,  the  momentum  generated  is 
directed  backwards  and  the  reaction  on  the  wall  of  the  channel 

is  directed  forwards.  Hence  the  moving  blades  are  driven 

forwards  partly  by  impulse  and  partly  by  reaction,  and  the 

Parsons  turbine  is  classed  as  an  Impulse-Reaction  Turbine. 
We  may  compare  the  moving  blades  of  an  impulse  turbine 

to  the  sails  of  a  ship,  the  high-speed  steam  acting  as  wind; 
and  those  of  a  reaction  turbine  to  a  ship  propelled  by  pumps 

as  in  H.M.S.  "  Waterwitch,"  or  propellers,  which  take  the 
water  and  give  it  a  backward  momentum,  thereby  forcing  the 
ship  forwards  by  reaction.  The  latter  analogy  is  not  perfect, 

for  the  water  has  to  be  accelerated  by  the  ship's  engines  whereas 
the  steam  accelerates  itself  by  its  own  high  pressure,  but  the 
principle  is  the  same.  Hence  we  may  regard  a  moving  row  of 
blades  of  a  Parsons  turbine  as  a  ship  under  both  sail  and  steam. 
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Miscellaneous  Exercises. 

Ex.  1.  A  jet  discbarges  100  lbs,  of  water  a  minute  against  a  wall,  at 
rigbt  angles  to  it,  at  a  speed  of  50  ft.  per  see.  How  mucb  momentum 
is  destroyed  per  minute  by  tbe  wall,  and  wbat  is  the  average  force  on 
tbe  wall? 

Ex.  2.  A  stream  is  flowing  at  3  miles  an  hour  at  right  angles  to  a 
floating  bridge,  which  opposes  an  area  of  120  sq.  ft.  to  the  stream.  Find 
the  force  on  the  bridge  exerted  by  the  stream. 

[1  cub.  ft.  of  water  weighs  62*4  lbs.] 

Ex.  3.  A  vertical  cricket  screen  measures  20  ft.  by  12  ft. ;  a  wind  blows 
directly  against  it  with  a  speed  of  30  miles  an  hour.  Taking  the  weight  of 

1  cub.  ft.  of  air  as  '08  lb.,  find  the  total  pressure  on  the  screen. 

Ex.  4.  The  pier  of  a  bridge  has  a  vertical  face  at  right  angles  to  the 
direction  of  the  stream  ;  the  breadth  of  the  pier  face  is  10  ft.  and  the  depth 
of  the  water  is  15  ft.,  the  speed  of  the  stream  being  30  ft.  per  minute.  Find 
the  force  on  the  pier  face. 

Ex.  5.  A  ship  runs  at  a  speed  of  4  miles  an  hour  before  a  wind  of 
15  miles  an  hour ;  find  the  pressure  on  a  sail  whose  area  is  400  sq.  ft.,  set 
square  to  the  wind. 

Ex.  6.  The  area  of  surface  which  a  motor  car  opposes  to  the  wind  is 
20  sq.  ft.  Calculate  the  wind  resistance  when  running  at  30  miles  an  hour 
on  a  calm  day,  and  the  h.p.  needed  to  overcome  it. 

Ex.  7.  If  the  propellers  of  the  "Drake"  (Ex.  25,  p.  191)  have  a  radius  of 
8  feet,  calculate  the  speed  of  the  race  of  the  propeller  for  a  ship  speed 
of  10  knots. 

Ex.  8.  A  jet  of  water  f  inch  in  diameter  enters  tangentially  the  concave 

surface  of  a  curved  plate  and  is  deflected  through  an  angle  of  40°  by  the 
plate,  which  is  moving  in  the  direction  of  the  jet  at  a  speed  of  30  ft.  per  sec. 
The  velocity  of  the  jet  is  60  ft.  per  sec.  Find  the  total  force  exerted  on  the 
plate,  in  magnitude  and  direction. 

Ex.  9.  An  aeroplane  is  being  driven  horizontally  by  a  motor  whose 
indicated  horse  power  is  30.  The  efficiency  of  the  motor  and  propeller 
is  50  per  cent.  The  pressure  of  the  air  on  the  wings  is  a  steady  force  of 

800  lbs.  wt.  inclined  upwards  at  an  angle  of  84°  to  the  direction  of  motion. 
Calculate  the  weight  of  the  aeroplane  and  the  speed  in  miles  an  hour. 
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Ex.  lO.  A  ship  steams  at  24  knots  against  a  head  wind  which  is 

blowing  at  15  knots  (1  knot  =  6080  ft.  per  hour).  The  front  of  the  chart 
house,  which  is  a  vertical  plane  perpendicular  to  the  direction  of  motion, 
has  an  area  of  90  sq.  ft.  Find  the  force  exer4ed  by  the  wind  on  the  chart 
house,  (i)  assuming  that  the  relative  velocity  of  the  air  is  completely 
destroyed  by  the  impact,  and  (ii)  by  the  formula  of  Art.  100. 

Ex.  11.  Water  flows  with  uniform  speed  of  10  ft.  per  sec.  through 
a  pipe,  whose  diameter  is  ̂   inch,  with  a  bend  in  it ;  the  two  parts  of  the 

pipe  make  an  angle  of  120°  at  the  bend.  Calculate  the  magnitude  and 
direction  of  the  reaction  on  the  pipe. 

Ex.  12.  Water  issues  from  a  pipe  at  a  speed  of  80  ft.  per  sec.  The 

pipe  has  a  cross- sectional  area  of  '5  sq.  ft.  The  water  strikes  normally 
against  the  blades  of  an  undershot  water  wheel  which  are  moving  at  30  ft. 
per  sec,  and  its  velocity  is  reduced  to  that  of  the  blades.  What  h.p,  does 
the  wheel  exert  ? 

Ex.  13.  A  kite  has  an  area  of  4  sq.  ft.,  and  flies  at  a  slope  of  30° 
to  the  horizontal,  in  a  wind  of  15  miles  an  hour.  Using  the  formula  of 
Art.  100,  calculate  the  normal  pressure  of  the  wind  on  it.  If  the  weight  of 
the  kite  is  1  lb.,  determine  the  angle  at  which  the  string  is  inclined  to  the 
kite,  and  the  tension  of  the  string  there. 

Ex.  14.  A  canvas  fire-hose  is  lying  on  the  ground,  not  in  a  straight 
line,  with  the  nozzle  free  to  move.  When  the  water  is  turned  on,  will 
the  reaction  at  the  bends  tend  to  straighten  out  the  hose?  Give  reasons 
for  your  answer. 

Ex.  15.     An  approximate  formula  for  the  resistance  to  motion  of  a 

train  is  5  -f  ̂   lbs.  wt.  per  ton,  where  V  is  the  speed  in  miles  per  hour. 

Calculate  the  effective  area  of  the  surface  opposed  to  the  wind,  in  the  case 
of  a  train  weighing  100  tons,  to  produce  the  second  term  in  this  formula. 
(Use  the  formula  of  Art.  100.) 

Ex.  16.  The  propeller  of  a  Deperdussin  monoplane  transmits  80  h.p., 
and  its  diameter  is  9  ft.  The  speed  of  the  aeroplane  is  68  miles  an  hour. 
Calculate  the  thrust  of  the  propeller;  hence  calculate  the  speed  of  the 

"  wake"  relatively  to  the  airman  (mass  of  1  cub.  ft.  of  air=-08  lb.). 

Ex.  17.  The  main-topsail  of  the  "Victory"  had  an  area  of  4500  sq.  ft. 
Calculate  the  force  exerted  on  it  by  a  wind  blowing  at  12  miles  an  hour 
when  the  ship  was  running  before  it  at  6  miles  an  hour ;  hence  calculate  the 

horse-power  of  this  sail  (use  the  formula  of  Art.  100). 
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MOTION    UNDER    VARYING    FORCES 

111.  Motion  under  varying  forces.  Forces  that  are 

absolutely  constant  in  magnitude  and  direction  seldom  occur  in 

everyday  practice ;  we  frequently  find  them  constant  in  direction 
but  varying  in  magnitude,  and  often  their  magnitude  does  not 

vary  according  to  any  simple  law.  In  such  cases  we  can  usually 

observe  the  effects  of  the  force  (for  example,  the  distances  moved 

by  the  body  at  the  end  of  successive  intervals  of  time)  and  from 
the  curves  representing  these  results  we  can  deduce  a  good  deal 
of  information  about  the  motion  and  the  force  in  action. 

For  instance,  suppose  that  a  body  is  in  motion  under  the 
action  of  an  unknown  force,  whose  magnitude  is  changing,  and 
that  a  series  of  observations  of  the  distance  of  the  body  from 

a  fixed  point  in  its  track  at  iijtervals  of  say  10  seconds  gives  the 

distance-time  curve  shown  in  Fig.  80. 

By  comparing  this  with  the  distance-time  curves  found  for 
motion  under  a  constant  force  (e.g.  Art.  14),  it  is  obvious  that 
the  force  was  not  constant ;  and  as  the  distance  of  the  body 

from  the  starting  point  begins  to  decrease  after  about  a  minute, 
it  is  clear  that  the  velocity  does  not  increase  all  the  time, 
but  that  the  body  stops  and  acquires  a  velocity  in  the  opposite 
direction. 

112.  Calculation  of  velocity  from  a  distance-time 

curve.  We  can  determine  the  velocity  of  a  body  at  any  instant 

from  the  distance-time  curve  of  its  motion,  by  drawing  a  tangent 
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to  that  curve  at  the  point  corresponding  to  that  instant.  For 

if  we  examine  Fig.  10  on  page  25,  it  hardly  needs  a  formal  proof 
to  convince  us  that  if  the  resultant  force  on  the  body  suddenly 

ceases  to  act  at  any  instant,  the  distancS-time  curve  of  the  subse- 

quent motion  is  the  tangent  to  the  actual  distance-time  curve  of 
the  body  at  that  instant.  Let  us  for  the  moment  assume  that 
this  is  so  ;  a  formal  proof  will  be  given  presently.  When  the 

body  is  moving  with  constant  velocity  (as  it  does  when  the 

resultant  force  has  stopped  acting)  its  distance-time  curve  is  a 
straight  line  and  the  velocity  is  given  by  the  gradient  of  this 
straight  line.     (See  Art.  7.)     But  this  constant  velocity  is  the 
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velocity  at  the  instant  when  the  force  ceased  to  act ;  so  the 

velocity  at  any  instant  during  the  motion  under  the  force  is 

given  by  the  gradient  of  the  tangent  to  the  distance-time  curve 
at  the  point  corresponding  to  that  instant. 

For  example,  to  find  the  velocity  at  a  time  24  sees,  in  the 

case  illustrated  in  Fig.  80,  we  draw  the  tangent  at  the  point  P 
corresponding  to  24  sees.,  and  measure  the  gradient  of  this  line 

by  drawing  the  lines  QL,  RL.     QL  represents  3*3  ft.,  and  RL 

3.3 represents  25  sees. ;  hence  the  velocity  required  is  — —  ft.  per  sec. 

or  -132  ft.  per  sec. 
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By  determining  in  this  way  the  velocity  at  several  instants 

we  can  draw  a  velocity-time  curve  for  the  motion.  But  it  will 
need  great  skill  in  drawing  the  tangents  to  a  given  curve,  so 

that  the  results  may  produce  a  smooth  and  accurate  velocity- 
time  curve. 

If  the  tangent  in  one  part  of  the  distance-time  curve  slopes 

downwards  from  right  to  left,  and  in  another  part  it  slopes  down- 

wards from  left  to  right,  it  is  obvious  that  the  corresponding 

velocities  have  different  signs,  and  will  be  represented  on  the 

velocit5''-time  curve  by  ordinates  on  different  sides  of  the  hori- 
zontal time-axis. 

Ex.  1.  The  following  table  gives  the  distances  of  a  piston  from  its 

starting  point  and  the  corresponding  times.  Plot  the  distance-time  curve  (to 

scales  1  inch  to  -5  ft.  and  1  inch  to  -1  sec),  and  from  it  deduce  the  velocity 
at  -05,  -10,  -15,  -27,  -30,  -35,  -45  sec. 

t  in  sec. 

s  in  ft. 

0 

0 

•05 

•13 

•10 

•42 

•15 
•8 

•20 

1-2 

•25 

156 

•30 

1-83 

•35 

1-98 

•40 

1^99 

•45 

1^87 

•50 

1-64 

Ex.  2.  Plot  the  velocity-time  curve  in  Ex.  1,  on  a  scale  of  1  in.  to  5  ft. 

l)er  sec,  and  1  in.  to  •I  sec.  (Keep  this  curve  for  future  use.)  From  it 
determine  the  instants  at  which  the  piston  is  at  rest,  and  at  which  it  is 

moving  at  greatest  speed.  Find  from  the  distance-time  curve  whether  this 
last  instant  is  when  the  piston  is  at  the  mid-point  of  its  stroke. 

Ex.  3.  ,  The  distances  travelled  up  a  gun  by  the  projectile,  and  the 
corresponding  times  are  as  follows : 

t  in  sec. 0 

•001 
•002 

•003 
•004 

•005 

s  in  ft. 0 

•15 

•8 

1^9 3  3 5 

Plot  the  displacement-time  curve,  and  determine  the  speed  at  times 
•0015,  ̂ 0025  sec,  and  at  a  distance  of  4  ft.  from  the  breech.  Estimate 
the  muzzle  velocity  and  compare  it  with  the  average  velocity  up  to  that 
point  and  with  the  velocity  at  half  time ;  does  it  suggest  that  the  acceleration 
was  uniform  ? 
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113.    Proof  that  the  gradient  of  the  tangent  to  the 

distance-time  curve  is  the  velocity  of  the  body.     Let 
PA  represent  the  displacement  of  the  body  at  the  instant  A^  and 
QB  the  displacement  at  a  later  instant  B.  Produce  the  line  PQ 

to  any  point  R.  Then  the  distance  which  the  body  moves 

during  the  time  represented  by  ̂ ^  (or  Pi/)  is  represented  by 

QM ;    hence  the  fraction  -pTri^"^  ~wiq\  represents  the  average 

velocity  during  the  interval  AB,  when  the  force  continues  to  act. 

Distance 

WB Time 

Fig.  81. 
EN 

If  we  take  Q  nearer  to  P,  at  Q\  then    ̂ -^  represents  the 

average  velocity  of  the  body  after  the  instant  A,  when  the  force 

has  continued  to  act  on  it  for  a  shorter  time  AB'.  If  we  take  Q 
very  close  indeed  to  P,  then  the  time  during  which  the  force 
continues  to  act  is  very  short  indeed,  and  the  force  will  not  have 

time  to  alter  the  velocity  appreciably  ;  so  the  average  velocity 
during  that  interval  is  very  nearly  equal  to  the  velocity  with 

which  the  body  would  go  on  if  the  force  had  actually  ceased  to 
act  at  the  instant  A. 

Now  as  Q  approaches  nearer  to  P,  the  line  PQB  turns  round 

P,  and  comes  continually  nearer  to  some  final  position  PS ;  (if  it 
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went  furtlier,  it  would  cut  the  curve  again  on  the  other  side  of 

F).     This  position  of  the  line  is  "  the  tangent  at  F.''     And  as FN 

FQF  approaches  nearer  to  FS^  the  fraction  — --  becomes  more 

nearly  equal  to  the  fraction  -jtm',  hence  tta?)  ̂ ^'  ̂ ^e  gradient  of 

the  tangent,  represents  the  velocity  with  whicii  the  body  would 

go  on  if  the  force  ceased  to  act  on  it  at  the  instant  A,  i.e.  to 

"  the  velocity  at  the  instant  A  "  (see  Art.  9). 

114.  Rate  of  change  of  a  quantity.  We  have 

hitherto  treated  the  velocity  of  a  body  at  an  instant  as  being  the 
distance  which  would  be  covered  during  the  next  unit  of  time  if 

the  velocity  were  unchanged.  It  may  also  be  regarded  as  "the 

time-rate  "  at  which  the  distance  of  the  body  from  a  tixed  point 
changes;  this  word  "rate,"  though  we  often  use  it  in  our  every- 

day life,  does  not  lielp  us  to  understand  the  meaning  of  "  velocity 

at  an  instant "  ;  but  a  clear  understanding  of  velocity  at  an 
instant  (as  above  defined;  helps  us  to  understand  the  meaning 

of  the  phrase  "  rate  of  change "  when  applied  to  distances  or 
other  quantities.  For  instance,  suppose  that  the  force  on  a 

body  changes  with  the  position  of  the  body,  then  the  "  rate  per 

foot "  at  which  the  force  changes  with  the  distance  of  the  body 
from  a  fixed  point  means  the  total  change  which  would  take 

place  in  the  force  when  the  body  was  displaced  one  foot  if  the 
rate  of  change  of  force  with  distance  were  to  continue  unaltered 

during  this  displacement.  Thus  if  the  force  varies  directly  with 

the  distance,  as  in  a  spiral  spring  (Fig.  82  (i)),  the  change  of  force 

for  any  displacement  at  all  positions  of  the  body  is  proportional 

to  the  displacement,  so  that  the  rate  of  change  of  the  force  with 

distance  actually  does  remain  constant.  But  if  the  force  varies 

inversely  with  the  distance  (Fig.  82  (ii)),  as  in  the  case  of  the 

pressure  of  a  definite  quantity  of  compressed  gas  on  a  piston, 
then  the  rate  of  change  of  pressure  with  distance  is  not  constant, 
nor  is  it  the  change  in  pressure  for  a  unit  displacement ;  it  can 
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be  found  by  drawing  a  tangent  to  the  force-distance  curve  at  the 
point  for  which  the  rate  of  change  is  required,  and  measuring  its 

gradient,  just  as  was  done  with  the  distance-time  curve. 
In  general,  the  gradient  of  the  tsftigent  gives  the  rate  at 

which  the  quantity  represented  by  the  ordinate  changes  with  a 
change  in  the  quantity  represented  by  the  abscissa. 

Distance Distance 

(i) (ii) 

Fig.  82. 

115.    Acceleration  as  a  rate  of  change  of  velocity. 
Hitherto  we  have  had  to  i  deal  with  cases  where  the  rate  of 

change  of  velocity  per  second  (i.e.  the  acceleration)  was  constant, 
but  if  the  force  on  the  body  is  not  constant,  its  acceleration  will 

not  be  constant.  We  must  extend  the  meaning  of  the  word 

"  acceleration "  to  suit  such  cases  :  it  will  now  become  "  the 
acceleration  at  an  instant  is  the  change  in  velocity  which  would 

take  place  in  the  next  unit  time  if  the  acceleration  were  to 

remain  constant  and  of  the  same  value  as  at  that  instant." 
We  can  determine  its  value  by  drawing  a  tangent  to  the 

velocity-time  curve  at  the  corresponding  instant,  and  calculating 
its  gradient ;  but  only  moderate  accuracy  is  attainable  in  this 
way. 

Ex.  4.  The  following  are  observed  velocities  of  a  body,  and  corre- 
sponding times ;  plot  the  velocity-time  diagram  and  calculate  the  acceleration 

at  '2,  '5  and  '7  sec.  from  the  start,  in  ft.  per  sec.  per  sec. 

t  in  sees. 0 

•1 

•2 

•3 

•4 

•5 

•6 

•7 

•8 

v  in  ft.  per  sec. 0 

•16 
•31 

•45 

•50 •71 

•81 

•89 

•95 
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Ex.  5.  Use  the  velocity-time  curve  found  in  Ex.  2  to  calculate  the 
acceleration  at  -05  and  -30  sec.  from  the  start. 

116.  Instantaneous    value    of  the    acting    force. 

When  the  resultant  force  on  a  body  is  not  constant,  the  accele- 

ration of  the  body  will  vary,  but  "  the  force  at  any  instant  "  is 
measured  by  the  product  of  the  mass  and  the  acceleration  at 

that  instant ;  for  Newton's  Second  Law  shows  that  if  the  force 
remained  constant  for  unit  time  after  that  instant  it  would  be 

measured  by  the  product  of  the  mass  of  the  body  and  its 
acceleration,  and  under  these  circumstances  the  acceleration 
would  remain  at  the  same  value  as  at  the  instant. 

Therefore,  when  we  have  observed  the  distance  of  a  body 
from  a  fixed  point  at  a  series  of  instants  and  have  drawn  a 

distance-time  curve,  we  can  deduce  the  value  of  the  force  acting 
on  it  at  any  time  during  the  observed  motion. 

For  instance,  if  the  mass  of  the  piston  quoted  in  Exs.  2 
and  5  is  30  lbs.,  we  can  find  the  resultant  force  on  it  at 

•30  sec.  from  the  beginning  of  the  stroke.  For  the  value  of 
the  acceleration  at  that  instant  is  —  44  ft.  per  sec.  per  sec.  ; 

hence  the  force  is  30  x  (-  44)  poundals,  or  1320  poundals  or 
41  lbs.  wt.  opposing  the  motion.  This  force  is  the  resultant 

of  the  various  forces  acting  on  the  piston,  i.e.  it  is  the  difference 

between  the  steam  pressure  and  the  component  along  the  piston- 
rod  of  the  thrust  along  the  connecting  rod. 

Ex.  6.  Find  the  resultant  force  on  the  above  piston  at  '05  sec.  from 
the  beginning  of  the  stroke. 

Ex.  7.  If  the  body  in  Ex.  4  weighs  4  lbs.,  find  tbe  force  on  it  at 
•2  sec.  from  the  start. 

117.  Approximate  method  of  deducing  velocity 
from  a  distance-time  curve.  If  we  have  observations  of 

the  distance  of  a  body  from  a  fixed  point  of  its  path  at  short 

equal  intervals  throughout  its  motion,  and  if  these  observations 

are  accurate  enough  to  give  a  distance-time  curve  that  needs 
little  or  no  smoothing,  then  we  can   deduce  the  velocit}^  at  a 
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given  instant  by  a  method  which  though  only  approximate  will 
probably  give  as  accurate  a  result  as  by  drawing  a  tangent  to 
the  curve.  Take  for  example  the  observations  given  in  Ex.  1, 

p.  201.  The  average  speeds  during  successive  twentieths  of  a 

second,  calculated  from  these  results,  are  2*6,  5-8,  7*6,  8*0,  etc. 
ft.  per  sec.  ;  if  these  values  are  compared  with  the  values  of  the 

velocities  at  the  mid-points- of  the  corresponding  intervals  of 
time,  as  deduced  from  the  velocity-time  curve  obtained  by 

drawing  tangents  to  the  distance-time  curve,  they  will  be  found 
to  agree  fairly  well. 

Hence  we  can  often  obtain  a  sufficiently  accurate  velocity- 

time  curve  by  taking  the  average  velocity  during  an  interval  as 
giving  the  velocity  at  the  middle  of  the  interval.  This  leads  to 

the  simple  test  for  uniform  acceleration  suggested  in  Ex.  15, 

p.  29;  if  the  average  velocity  during  successive  equal  intervals 
of  time  increases  by  the  same  amount,  the  acceleration  is 

uniform  ;  when  the  acceleration  is  uniform,  it  is  strictly  true 

that  the  average  velocity  during  an  interval  of  any  length  is  the 
velocity  at  the  middle  of  the  interval  (Art.  15). 

118.  Calculation  of  distance  by  means  of  a 

velocity-time  curve.  If  we  know  the  velocity  of  a  body  at 

various  instants  of  its  motion,  we  can  deduce  its  distance-time 
curve;  this  is  the  converse  of  the  process  described  in  Art.  112. 

Consider  first  the  case  of  a  body  moving  with  uniform 

velocity,  v  ft.  per  sec.  say.  If  OA  in  Fig.  83  represents  this 

velocity,  then  APQ  is  the  velocity-time  curve.  Let  OM,  ON 
represent  two  periods,  ̂ j,  t^  sees.  say.  The  distance  the  body 

moves  in  the  time  t^-t^  sees,  is  v{t.^-t^)  ft.  Now  PM  repre- 
sents V  and  MN  represents  t^-t-^,  so  the  area  PMNQ  represents 

their  product,  i.e.  the  distance  run.  As  in  the  case  of  work  and 

energy  (which  we  have  seen  are  represented  by  areas  on  a  force- 
distance  curve,  see  Arts.  55  and  70)  we  must  be  careful  to 
determine  the  scale  of  areas,  if  we  have  to  calculate  the  distance 
moved  by  computing  the  area  on  a  velocity-time  curve. 
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"1^1 

Ex.  8.     On  a  velocity-time  curve  the  scale  is  1  in.  to  'S  ft.  per  sec.  and 
1  in.  to  3  sees.  ;  what  distance  is  represented  by  7-5  sq.  ins.  ? 

P  Q 

M Tim  e 

Fig.  83. 

Next  take  the  general  case.  The  following  proof  follows  the 

same  lines  as  that  in  Art.  57,  and  will  therefore  be  given  more 
briefly. 

•^ 

/ 

P^ 

/ 

5 

r  ̂ '/t 
/ 

n'
 

«    «' 

Pi 

_^
^^
 

N'
 

M2 

Time 

Fig.  84. 

Let  Pi  Ml,    P2M2  represent  the   initial  and  final  velocities; 

subdivide  M^JL  into  a  large  number  of  equal  parts,  of  which 
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mm',  M'  M^  are  two.      If  during  the  interval  mm\  the  velocity 
had  remained  constant  and  equal  to  qm,  the  distance  moved  in 

that  interval  would  have  been  represented  by  the  area  qmm's. 
If  during  the  same  interval  the  veloci^  had  remained  constant 

and  equal  to  qm\  the  distance  moved  would  have  been  represented 

by  the  area  rmm'q.     As  the  velocity  changes  gradually  from  one 
value  to  the  other,  the  distance  must  be  intermediate  between 

these  values,  so  the  error  in  taking  it  as  represented  by  the  area 

between  the  curve,  the  two  ordinates  and  the  time-axis  must  be 

less  than  the  area  rqsq'  or  tt'n'n.     Hence  the  distance  moved  in 
the  interval  M^M^  is  represented  by   the  area  hetiveen  the  curve 

P1P2,  the  two  ordinates  and  the  time-axis,  within  a  possible  error 

represented   by    the   area   P^N\      This   possible   error   may   be 
reduced  to  any  extent  we  please  by  increasing  the  number  of 
equal  parts  into  which  we  subdivide  the  interval  M^M^. 

As  an  illustration  of  this  process,  which  is  much  more  accurate 
and  practical  than  that  of  drawing  tangents  to  a  curve,  consider 
the  case  of  an  engine  and  train,  of  total  mass  100  tons,  which  at 

a  certain  instant  have  a  speed  of  12  miles  an  hour  (or  17*6  ft. 
per  sec).     Suppose  that  the  engine  is  exerting  a  constant  power, 
of    400   H.P.,   and  neglect  the  frictional  resistances  to  motion, 

which  do  not  become  considerable  until  high  speeds  are  reached. 
33000 

In  each  second  the  kinetic  energy  is  increased  by  400  x  ft.  lbs. 

100  X  2240 

or    220,000  x^   ft.-poundals.      Initially  it  is   — --— :^^  -  -  x  17-6^- 
ft.-poundals ;  so  at  any  time  t  sees,  later  it  is 

100  X  2240 
  X  17-62  +  220,000^^  ft.-poundals. 

T*  -^        1     •.     •    .u          ̂ .                   :            '    100  X  2240   2 
11  Its  velocity  is  then  v  it.  per  sec,  its  K.  e.  is   ^   ■y 

*+           J  1      u          100  X  2240   ,     100  X  2240  ,  ̂  ̂,     ̂ ^^  ̂ ^^  , 
ft.-poundals ;  hence   ^=   ^   17*62+  220,000^^^, 

or  i;2=  17-62 +  63-25  x  t. 

So  we  can  calculate  v  corresponding  to  any  value  of  t,  and 
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draw  the  velocity-time  curve.  For  example,  for  4,  10,  16,  20 

and  30  sees,  the  velocities  are  respectively  23-73,  3069,  36*35, 
39-68  and  46*97  ft.  per  sec.  The  velocity -time  curve  should  be 
drawn  to  scales  of  1  in.  to  10  ft.  per  sec,  and  1  in.  to  5  sees. 

Then  1  sq.  in.  represents  a  distance  of  50  ft.  along  the  railway 

line,  and  a  square  of  -1  inch  side  represents  -5  ft.  (The  curve 
shows  at  once  that  the  acceleration  is  not  constant.)  Counting 
up  these  little  squares  under  the  curve,  we  find  that  the  distance 
run  in  the  first  5  sees,  is  108  ft.,  in  10  sees,  is  247,  in  15  sees,  is 
413  ft.,  in  20  sees,  is  601  ft.,  in  25  sees,  is  809  ft.,  and  so  on. 

Ex.  9.     Find  iu  this  way  the  distance  run  in  40  sees. 

119.  Application  to  uniform  acceleration,  A  very 

useful  application  of  the  general  theorem  proved  in  the  last 
Article  is  found  in  the  ease  of  constant  forces,  where  the  accelera- 

tion is  constant,  i.e.  the  velocity-time  curve  is  a  straight  line. 

Fig.  85. 

The  value  of  the  area  which  represents  the  distance  moved 

can  in  this  case  easily  be  calculated,  and  we  will  use  it  to 
establish  a  general  formula  connecting  distance,  time  and 
acceleration. 

A.  14 
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Suppose  that  the  body  has  an  initial  velocity  v-^  (ft.  per  sec.) 
at  the  beginning  of  the  interval  t  (sees.)  which  we  are  considering ; 

and  suppose  that  the  acceleration  is  a  (ft.  per  sec.  per  sec).  This 

means  that  in  one  unit  of  time  (1  sec.)  ̂ he  velocity  will  increase 

by  a  (ft.  per  sec),  so  in  time  t  (sees.)  it  will  increase  by  at  (ft. 

per  sec) ;  hence  at  the  end  of  the  interval  the  velocity  is 

Vj  +  at  (ft.  per  sec).     If  we  call  this  final  velocity  Vo  (ft.  per  sec), 
then 

V2  =  Vi  +  at      (i). 

This  general  formula  depends  only  on  the  meaning  of  the  words 

"constant  acceleration." 
In  Fig.  85,  let  P^M^,  P^M^  represent  the  initial  and  final 

velocities,  then  the  area  P^M^M^^P^  represents  the  distance 

(s  ft.,  say)  moved  during  the  interval  t  (sees.).  We  are,  then, 
reckoning  time,  t,  from  the  instant  represented  by  l/j,  and 
distance,  s,  from  the  position  of  the  body  at  that  instant.  To 

calculate  the  value  of  this  area,  draw  P^N  parallel  to  31  ̂ M^. 

Then  PiM^  represents  v-^,  M^M^  represents  t,  and  P^N  represents 
at;  hence  area  P^M^M^N  represents  v^t  (ft.)  and  the  area 

P^NP^  (or  J  X  P^N X  P^N)  represents  J  x  a^  x  ̂   or  \at^  (ft.). 

Hence  s  =  Vit  +  |at2   (ii).    ̂  

We  can  put  equation  (ii)  in  another  form;  since  P^M^^,  or 

NM<^^  represents  v^,  and  P^M^  represents  v^,  then  i^g^^  ̂ ^^P^^sents 
v^-v-^,  and  the  area  of  the  triangle  P^NP^  is  J  {v.^  —  v^)  t. 

Hence  s  ̂ v^t  +  ̂   (v2-Vj)t^-^^    ̂ t       (iii). 

It  will  be  seen  that  the  equation  (iii)  can  be  derived  from  (ii), 

and  is  not  an  independent  result,  as  it  appeared  to  be  in  Art.  15. 

The  two  were  established  by  separate  experiments  to  avoid 
introducing  the  above  proof  at  that  stage. 

120.  General  formulae  for  uniformly  accelerated 

motion.     The  equations  (i)  and  (ii)  of    last  Article  are  quite 
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general ;  that  is,  if  the  proper  signs  are  given  to  the  quantities 

represented  by  t'^,  v^,  «,  s  and  t^  they  hold  whether  the  final 
velocity  is  in  the  same  or  in  the  opposite  direction  to  the  initial 

velocity,  whether  we  consider  an  instant  before  or  after  the  time 

from  which  t  is  reckoned,  etc.  But  it  must  be  remembered  that 

s  does  not  necessarily  represent  the  distance  travelled  by  the 

body,  but  in  all  cases  the  distance  it  is  from  the  point  from  which 

we  are  reckoning.  (To  make  this  point  clear,  Fig.  85  should  be 

drawn  for  the  case  in  which  P^  and  P.^  are  on  opposite  sides  of 

OM.)  From  these  two  equations  we  can  obtain  a  third,  which 

is  sometimes  useful,  by  eliminating  t  from  them. 

From  (i)  we  have  t~    ̂        ̂ ;  substituting  this  value  of  t  in  (ii) a 

or  2as  =  2?;i  (v.,  -  ̂ 'l)  +  (v^  —  v^'^ 

or  V22  =  Vi2  +  2as       (iv). 

This  equation,  like  the  others,  holds  whatever  the  sign  of 

v^^  Vo,  a  or  s. 

Ex.  lO.  A  train  with  the  brakes  on  (to  such  an  extent  as  to  produce 
constant  retardation)  is  observed  at  a  certain  instant  to  be  travelling  at 
15  ft.  per  sec,  and  to  come  to  rest  after  running  300  ft.  further.  How 
long  before  the  instant  of  observation  were  the  brakes  applied,  the  train 
then  running  at  88  ft.  per  sec? 

Count  time  from  the  first  observation,  distance  from  the  then  position 

of  the  train.  Then  Vj  =  15ft.  per  sec,  v.j  =  0,  s  =  300  ft.  Hence  from  (iv) 
0  =  15^  + 2a  X  300,  and  a=-f  ft.  per  sec.  per  sec. 

In  order  to  apply  equation  (i),  we  must  take  Vj,  the  velocity  at  the 
beginning  of  the  interval,  to  be  15  ft.  per  sec,  and  v^,  the  velocity  t  sees. 

later,  to  be  88  ft.  per  sec.  and  a=  -f  ft.  per  sec.  per  sec.  as  above;  then 
73  X  8 

88  =  15  +  (-f)  X  f,  whence  t=   ~ —  sees.,  or  3  mins.  14|  sees,  earlier. o 

Ex.  11.  A  ball  is  thrown  vertically  upwards  with  a  velocity  of  60  ft. 
per  sec. ;   neglecting  air  resistance,  find  its  height  after  3  sees. 

Ex.  12.  Plot  the  distance-time  curve  for  Ex.  11,  on  a  scale  of  1  in. 

to  -5  sec,  and  1  in.  to  10  ft. 

14—2 
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121.  Uniform  motion  in  a  circle.  Consider  the  case 

of  a  body  moving  along  a  circular  path  with  constant  speed,  such 
as  a  motor  car  running  round  a  circular  track,  or  a  stone  whirled 

round  in  a  sling,  or  a  bit  of  paint  on  the  rim  of  a  flywheel. 

Although  its  speed  does  not  change,  there  must  be  some  force 
continually  acting  on  it,  or  it  would  move  in  a  straight  line 
instead  of  a  circle ;  we  have  now  to  find  what  that  force  is. 

Let  us  first  imagine  the  body  to  move  with  velocity  v  (ft.  per 

sec.)  along  the  side  AB  of  a  regular  polygon  of  N  sides  which  is 
inscribed  in  the  given  circle,  whose  radius  we  will  call  R  (ft.). 
When  it  reaches  B,  it  would  continue  along  the   straight  line 

(i) 
B         A'  P 

Fig.  86. 

BA^  but  imagine  that  a  sudden  blow  then  changes  its  direction 

of  motion  to  the  next  side  of  the  polygon,  5(7,  but  without 
changing  the  speed  of  the  body.  Draw  PQ  parallel  to  AB  to 

represent  the  velocity  along  AB,  and  PR  parallel  to  BC  to 

represent  the  velocity  along  BC  ',  then  QR  represents  the  change 

of  velocity  which  occurred  at  B,     Now  the  angle  AOB  is  ̂ th  of 

four  right  angles,  and  so  also  is  A'BC \  hence  the  angle  QPR  =  the 
angle  AOB.  Also,  both  the  triangles  AOB,  QPR  are  isosceles 

triangles,  hence  they  are  similar.     Hence  the  angle  PQR  =  angle 
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OAB  =  angle  OB  A  ;  or  QB  is  parallel  to  BO.  The  blow  at  B 

must  therefore  by  Newton's  Second  Law  act  towards  the 
centre  0.     Also 

QR_PQ  ,.. 

AB     OA    
^^' 

Denote  the  time  in  which  the  body  traverses  AB  hy  t  (sees.), 

then  AB^vt  (ft.).     So  we  can  write  (i)  in  the  form 

change  of  vel.  Sit  B      v 

vt  ~  R 
chansre  of  vel.  at  B      v^  .... 
— ^-1   =  s   ^")- 

If  now  we  suppose  the  number  N'  to  be  indefinitely  increased, 
the  body  will  move  with  uniform  speed  in  the  circle,  and  the 

sudden  blows  merge  into  a  continuous  force  directed  towards 
the  centre  of  the  circle. 

The  left-hand  side  of  equation  (ii)  now  becomes  the  time-rate 

at  which  the  velocity  changes,  i.e.  the  acceleration.  * 
Hence  when  a  body  moves  with  uniform  speed  v  (ft.  per  sec.) 

in  a  circle  of  radius  B  (ft.),  its  acceleration  is  ̂   (ft.  per  sec. 

per  sec),  directed  towards  the  centre ;  if  m  (lbs.)  denote  its  mass, 

the  force  necessary  to  keep  it  moving  in  the  circle  is  (poundals) 

directed  towards  the  centre  of  the  circle. 

122.  "Centrifugal  Force."  This,  then,  is  an  instance 

of  a  force  which  varies  in  direction  but  not  in  magnitude.  Since 

action  and  reaction  are  equal  and  opposite,  the  body  may  be 

considered  to  exert  an  opposing  force,  in  consequence  of  its 
inertia,  directed  outwards  from  the  centre  and  acting  on  the 
body  which  constrains  it  to  move  in  the  circle ;  this  is  called 

in  everyday  language  "centrifugal  force." 
It  is  a  somewhat  misleading  phrase,  for  it  suggests  that  if 

this  force  prevailed  the  body  would   move  outwards  along  the 
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line  of  action  of  the  force,  i.e.  along  the  radius.  But  if  the 

external  force  which  keeps  the  body  moving  in  the  circle  suddenly 
ceases  to  act,  the  body  will  have  nothing  to  oppose,  and  the 

"  centrifugal  force "  will  also  cease  to  act ;  the  body  will  then 
move  along  a  tangent  to  the  circle,  not  along  a  radius. 

123.     Illustrations   of  motion   in   a   circle.     As  an 

instance  of  "centrifugal  force," 
-»  consider  the  behaviour  of  a 

weight  hung  by  a  string  from 
the  roof  of  a  railway  carriage 

which  is  travelling  at  a  steady 

30  miles  an  hour  (or  44  ft.  per 

sec.)  along  a  circular  track  of 
radius  300  ft. 

Fig.  87  (i)  is  a  bird's-eye 
view  of  the  weight,  and  its 

path  is  shown  dotted.  This  is 

the  "  acceleration-diagram  "  (cf. 
Art.  79)  of  the  weight ;   it  has 

44^ 
300 

(i) 

Fig.  87. 

44 
an  acceleration  of  ̂ jr^  ft.  per  sec.  per  sec.  directed  towards  the 

centre  of  its  circular  path.  As  we  assume  that  the  motion  has 

been  going  on  long  enough  for  the  weight  and  string  to  settle 

down  into  a  steady  position  in  the  carriage,  it  has  no  other 
acceleration. 

Fig.  87  (ii)  is  a  cross-section  of  the  carriage,  looking  in  the 
direction  in  which  the  carriage  is  travelling ;  the  centre  of  the 

circular  track  is  to  the  spectator's  left.  This  is  the  "force- 

diagram  "  of  the  weight ;  the  only  forces  acting  on  it  are  the 
attraction  of  the  earth  {M  pound als)  and  the  tension  along  the 
string  {T  poundals).  Call  the  inclination  of  the  string  to  the 
vertical  a.  Then  the  resultant  vertical  force  on  the  weight  is 

T  cos  a  — Mg  poundals,  and  the  resultant  horizontal  force  is 

:2'sina   poundals,    directed  towards   the    left   if   the    weight   is 
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displaced  as  shown  in  Fig.  87.  Since  there  is  no  vertical  accele- 
ration, the  former  component  vanishes,  i.e.  Tcosa  =  Mg.  The 

horizontal    component    Tsina   poundals    produces    a    horizontal 

acceleration    of   — — —    ft.    per   sec.    per   sec. ;    we   see    by   the 

acceleration   diagram    that  the   horizontal  acceleration  is   .^^-r , 

7' sin  a       44^  x^  1  . I.e.     — ^ —  =  oKrv       -trom    these    two    equations    we    get,    by 

442 

elim
inat

ing 
 

T  and  
 
M,  tan  a  ==-^^

7 
  .     Henc

e  
we  find 

 
that

  
a 

is  about  11°  20'. 
So  to  a  spectator  sitting  in  the  carriage  there  would  appear 

to  be  a  horizontal  force,  directed  away  from  the  centre  of  the 

circular  track,  acting  on  the  weight,  which  kept  the  string 

inclined  outward  at  a  steady  angle  of  11°  20'  to  the  vertical; 
he  would  call  this  a  "  centrifugal  force."  But  the  actual  forces 
acting  on  the  weight  are  really  only  the  attraction  of  the  earth 

acting  vertically  downwards,  and  the  tension  of  the  string  acting 

upwards  and  inwards  towards  the  centre  of  the  circular  track ; 

these  two  have  an  "  unbalanced "  horizontal  component  acting 
inwards,  and  so  producing  the  inward  acceleration  needed  to 

make  the  body  move  in  a  circle.  There  is  no  outward  centrifugal 

force  on  the  body  at  all,  though  to  a  spectator  moving  with  the 
body  there  may  appear  to  be  one ;  but  the  body  may  be  said  to 

exert  a  "  centrifugal  force  "  on  the  carriage  roof. 

124.  Take  as  another  instance,  a  man  skating  at  15  miles 

an  hour  on  the  outside  edge  in  a  circle  of  radius  40  ft.  Fig.  88 

(i)  gives  his  acceleration  diagram  as  before,  Fig.  88  (ii)  the 

force-diagram.  We  know  that  he  has  to  lean  inward ;  suppose 
he  does  so  at  an  angle  of  a  to  the  vertical.  Then  the  forces  acting 

on  him  are  (a)  his  weight  {Alg  poundals)  acting  vertically  down- 
wards through  his  centre  of  gravity,  (6)  some  force  exerted  by 

the  ice  on  his  skate;  resolve  this  into  vertical  (R  poundals)  and 
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horizontal  (aS^  poundals)  components.  Since  his  foot  is  not  "carried 

from  under  him  "  either  to  right  or  left  by  the  reaction  of  the  ice 
on  his  skate,  this  reaction  must  pass  through  his  centre  of  gravity, 

since  if  it  did  not  it  would  make  him  1'otate  about  that  point. 
Hence  by  the  triangle  of  forces  R  and  S  are  connected  by  the 

o 

equation  ̂   =  tan  a.  Further,  since  he  has  no  vertical  acceleration, 

Mg  =  R.  The  horizontal  force  on  him  is  S  poundals,  which  gives 

him  a  horizontal  acceleration  of  ̂   ft.  per  sec.  per  sec;  hence 

S      222 
from    the    acceleration    diagram    ̂ ^ 

equations  we  get  tan  a 
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From    these    three 

22 

40 

(i) 
Fig.  88. (ii) 

We  can  look  at  this  case  in  another  and  better  way.  If  the 
man  is  standing  still  and  upright  on  one  skate,  there  are  forces 

acting  on  each  particle  of  him;  its  weight  {ing  poundals)  vertically 

downward,  and  the  reactions  of  neighbouring  particles.  These 
forces  on  each  particle  are  in  equilibrium ;  hence  the  reactions 

of  neighbouring  particles  compound  into  a  single  force  of  mg 
poundals  vertically  upwards.  These  reactions  for  all  particles 
of  the  body  compound  into  a  single  force  {Mg  poundals)  acting 
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through  his  centre  of  gravity,  along  the  line  joining  his  skate 
to  his  centre  of  gravity. 

But  when  the  man  is  moving  in  a  circle,  the  forces  on  each 
particle  are  not  in  equilibrium  ;  there  must  be  a  resultant  force 

which  produces  in  the  particle  a  horizontal  acceleration  of  — ^  ft. 

22^ 

per  sec.  per  sec. 
 
so  this 

 
resul

tant 
 
force

  
is  m  -—  pound

als. 
    

The 

weight  of  the  particle  is  still  mg  poundals  vertically  downward ; 
hence  we  can  find  by  the  triangle  of  forces  . 
what  must  now  be  the  reaction  of  the 

neighbouring  particles  {BA  in  Fig.  89). 
This  triangle  is  similar  for  every  particle, 
hence  the  angle  BAG  is  the  same  for  all; 

call  it  a.  Then  the  magnitude  of  the  re- 
action  of   neighbouring   particles  on   any 

particle  of  mass  m  pounds  is  — ^  poundals,     ̂ 9  ̂  

and  the  direction  of  the  force  is  the  same 

for  every  particle.  Hence  this  system  of 
forces  is  similar  to  that  in  which  an 

extended  body  is  acted  on  by  gravity,  only 

the  acceleration  of  "gravity"  is  increased 

from  a  to    and  inclined  to  the  vertical  xf\„   on 
cos  a  ^^^'  ̂ ^' 

at  an  angle  a;   so  these  reactions  will  compound  into  a  single 

force  passing  through  his  centre  of  gravity  and,  in  order  not  to 
fall  over,  he  must  incline  his  body  so  that  the  line  between  his 
skate  and   centre  of   gravity  is  inclined  to   the   vertical  at  an 
angle  a. 

22^ 

From
  

Fig.
  
89,  we  see  that

  
tana

^-^T
:- 

For  the  same  reason,  the  resultant  forces  on  each  particle, 

m  X  22^ 
— jjr —  )  towards  the  centre  of  the  circular  path,  compound  into  a 

as  before. 
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single  resultant  force  through  the  centre  of  gravity,  of  magnitude 

J/         poundals,  where  M  lbs.  is  the  mass  of  the  wliole  body ;  for 

all  these  forces  are  parallel  and  producS  the  same  acceleration  in 

each  particle,  as  in  the  case  of  gravity. 

Hence  we  can  treat  the  problem  as  if  the  whole  mass  was 

concentrated  at  the  centre  of  gravity.  Strictly  speaking,  the 

radius  of  the  path  is  not  the  same  for  all  the  particles;  but  the 

method  gives  results  which  are  very  nearly  correct  if  the  radius 

is  large  compared  with  the  size  of  the  body. 

Ex.  13.  A  man  rides  a  bicycle  at  20  miles  an  hour  round  a  circular 
path  of  radius  30  ft. ;  calculate  the  angle  at  which  he  must  lean  inwards. 

Ex.  14.  Find  the  force  of  friction  which  is  called  into  play  sideways 
between  the  tyre  and  the  ground  in  Ex.  13,  if  the  man  and  bicycle  weigh 
200  lbs. 

Ex.  15.  If  the  path  is  "banked"  to  suit  this  speed  of  20  miles  an  hour 
(i.e.  sloped  at  right  angles  to  its  length  so  that  it  is  at  right  angles  to  the 
bicycle)  what  is  its  gradient  ? 

Ex.  16.  What  is  the  gradient  across  a  circular  track  of  radius  |  mile 
banked  for  motor  racing  at  110  miles  an  hour  ? 

Ex.  17.  Find  the  additional  weight  which  the  bicycle  has  to  support  in 
Ex.  13,  over  the  amount  it  supports  when  travelling  in  a  straight  line,  if  the 
man  weighs  12  stone. 

125.  Curves  in  railway  lines.  In  order  to  prevent  the 

danger  of  trains  being  derailed  when  rounding  curves,  the  lines 

are  "banked,"  as  is  shown  to  be  necessary  in  the  last  set  of 
examples,  by  raising  the  outer  rail  to  an  extent  depending  on 

the  average  speed  of  the  trains  on  the  curve.  If  this  speed  be 

V  ft.  per  sec,  and  the  radius  of  the  curve  be  r  ft.,  the  line  joining 

the  upper  surfaces  of  opposite  rails  must  be  inclined  to  the  hori- 

zontal  at  an  angle  a  where  tan  a  =  —  .     As  the  distance  between 

rg 

the  rails  is  4  ft.  9  in.,  we  can  deduce  the  height  by  which  the 
outer  rail  must  be  raised  above  the  inner  one. 
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Ex.  18.  Calculate  the  super-elevation  of  the  outer  rail  in  inches  for 
a  speed  of  60  miles  an  hour  for  a  curve  whose  radius  is  1500  ft. 

Ex.  19.  A  coal  truck  weighing  15  tons,  running  on  4  wheels,  has  its 
centre  of  gravity  3  ft.  above  the  rails.  It  runs  at  15  miles  an  hour  round 
a  curve  of  radius  200  ft.,  the  two  rails  being  at  the  same  level.  Find  the 
horizontal  and  vertical  pressures  of  the  rails  on  each  wheel. 

Use  the  notation  shown  in  Fig.  90  ;  the  centre  of  the  circular  track  is 
supposed  to  be  to  the  left  and  the  truck  to  be  running  from  the  spectator. 
There  will  be  no  pressure  on  the  flange  of  the  inner  wheel.  The  forces 
i^i,  Rq,  Sq  and  W  must  have  a  horizontal  resultant  acting  through  the  c.  g., 

of  magnitude  15  x  2240  x  --r-  poundals,  in  order  to  make  the  truck  move  in 

a  circle.     We  will  call  this  T  poundals. 
Hence,  resolving  vertically, 

R^  +  lio-W  =  0     (i), 

resolving  horizontally  >%—T    (ii) 

and  taking  moments  about  the  top  of  the  outer  rail,  the  counter-clockwise 
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moments  of  the  forces  acting  on  the  truck  are  W : 

4-75 

i?ix4-75  poundal-ft. 

The  moment  of  a  force  T  horizontally  through  the  c.  g.,  towards  the  left,  is 

a  counter-clockwise  moment  of  magnitude  2'  x  3  poundal-ft.  Hence,  since 
T  is  the  resultant  of  the  acting  forces 

^xi^-J?ix4-75  =  rx3   (iii). 

Since  T=15x2240x -— - ,  and  TF- 33600^,  we  can  calculate  R^,  Rq  and 

Si) ;  the  results  must  be  halved  to  get  the  pressures  on  each  wheel.  It  will 
be  seen  that  even  without  banking,  the  inner  wheel  still  supports  a  large 
proportion  of  the  weight  so  that  there  is  a  large  margin  of  safety,  before  the 
truck  tends  to  overturn. 

126.    Motion   in   a  vertical   circle.      As    a    further 

instance  of  motion  in  a  circle,  suppose  a  weight,  tied  to  a  string 

/ I 
1 

(i) 

Fig.  91. 

(ii) 

whose  other  end  is  fixed,  is  travelling  round  in  a  vertical  circle. 

Its  speed  will  not  be  uniform,  for  at  different  heights  it  will  have 

different  amounts  of  potential  energy  and  therefore  different 
amounts  of  kinetic  energy;  its  speed  will  be  least  when  it  is 

passing  its  highest  point.  Suppose  its  speed  is  then  v  ft.  per  sec, 
and  the  length  of  the  string  is  I  ft.,  and  the  mass  is  m  lbs.  Call 

the 'tension  of  the  string  at  this  point  T  poundals.  Then  the 
forces  on  the  body  are  T  poundals  and  mg  poundals,  both  acting 
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vertically  downwards.      (In  Fig.  91,  (i)  is  the  force  diagram,  and 

(ii)   the    acceleration   diagram.)     The    resultant   of   these    must 

produce  an  acceleration  of  y  ft.   per  sec.   per  sec.  towards  the 

centre  of  the  circle,  i.e.  the  resultant  is  a  force  of  -j-  poundals 

vertically  downwards.     Hence  T  A-mg  = 

We  can  determine  the  least  speed  of  the  body  at  the  highest 

point  at  which  it  will  keep  on  moving  in  its  circular  path,  and 
not  drop  out  of  it,  by  finding  the  value  of  n  from  the  above 
equation  which  makes  T-^. 

Ex.  20.     Find  the  least  velocity  when  Z  =  2  ft. 

Ex.  21.  Determine  the  velocity  at  the  lowest  point  in  the  case  of  Ex.  20. 
The  decrease  of  potential  energy  is  mg  x  4  ft. -poundals,  so  we  can  calculate 
the  total  kinetic  energy. 

127.  Simple  Harmonic  Motion.  We  will  now  deal 

with  a  case  in  which  a  body  moves  under  a  force  which  is 
constant  in  direction  but  variable  in  magnitude ;  and  we  will 

introduce  it  by  a  mathematical  device,  not  directly  as  in  the  case 
of  a  constant  force. 

AB  (Fig.  92)  is  a  rod  which  is  free  to  move  in  the  direction 
of  its  length  between  guides  C.  To  the  rod  is  attached  a  cross- 
piece  D  with  a  slot  at  right  angles  to  the  length  of  the  rod.     A 
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circular  disc  E  with  its  centre  opposite  the  centre  line  of  the 
rod,  carries  a  pin  fixed  to  it,  which  fits  without  shake  in  the  slot. 

If  this  disc  is  turned  round  on  its  centre,  the  pin  causes  AB  to 

move  backwards  and  •  forwards ;  and  *if  the  disc  turns  at  a 

constant  speed  the  rod  is  said  to  move  with  "  Simple  Harmonic 
Motion."  The  movement  will  be  better  understood  if  the 
apparatus  is  examined  in  action. 

A  more  precise  definition  of  simple  harmonic  motion  (usually 

written  s.h.m.)  can  be  obtained  geometrically. 

Fig.  93. 

If  a  'point  P  moves  with  constant  speed  round  a  circle^  and  a 
line  PM  is  drawn  perpendicular  to  a  fixed  diameter  A  B,  then  the 
point  M  moves  with  simple  harmonic  motion. 

This  is  clearly  the  same  arrangement  as  in  the  above 

apparatus.  A  little  consideration  of  either  will  show  that, 
starting  from  the  end  of  its  travel  to  the  right,  the  point  moves 
to  the  left,  slowly  at  first  and  with  increasing  speed ;  the  speed 
decreases  on  passing  the  centre  of  the  circle,  and  vanishes  at  an 
equal  distance  on  the  other  side.  The  point  then  returns  through 

the  centre,  with  similar  changes  of  speed,  to  its  starting  point ; 
it  then  repeats  the  cycle. 

If  V  ft.  per  sec.  is  the  speed  of  P,  and  r  ft.  is  the  radius  of  the 
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circle,  then  P  always  has  an  acceleration  of  -  ft.  per  sec.  per  sec. 

directed  towards  0  the  centre  of  the  circle.  Draw  a  line  fo  to 

represent  this  acceleration  and  resolve  it  into  components  'pm 
and  mo  perpendicular  and  parallel  to  the  fixed  diameter  AB. 
Then  the  acceleration   represented   by   mo  has   a  magnitude   of 

—  X  - .  But  the  triangle  pmo  is  similar  to  FMO  :  hence 
po       r  ^       r 

(i) (ii) 

Fig.  94. 

po 
ABi

s 

MO 

PO' 
MO 
PO 

Hence  the  component  acceleration  of  P  parallel  to 

—  .      In  this  expression  everything  but  MO  is  a 

constant  for  all  positions  of  P  in  its  path  round  the  circle; 

hence  the  component  acceleration  of  P  parallel  to  AB  is  pro- 
portional to  the  distance  of  M  from  0.  But  the  total  acceleration 

of  Mis  equal  to  the  component  acceleration  of  P  parallel  to  AB. 
Hence  a  body  moving  with  S.  H.  M.  has  an  acceleration  which  is 

proportional  to  its  distance  from  a  fixed  point,  and  always  directed 

towards  that  point. 
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Therefore,  a  body  moves  with  s.  h.  m.  if  the  force  on  it  is 

always  directed  towards  a  fixed  point  and  is  proportional  to  the 
distance  of  the  body  from  that  point. 

It  will  be  noticed  that  this  was  the  case  with  the  spiral  spring 

supporting  a  weight,  discussed  in  Art.  70 ;  it  is  generally  true 
of  bodies  moving  under  elastic  forces,  such  as  stretched  strings, 

tuning  forks,  etc. ;  as  these  give  out  musical  notes  when  they 

vibrate  with  sufficient  frequency,  the  motion  is  called  Harmonic. 

In  many  cases  in  everyday  life  the  force  on  a  body  is  more  or 
less  accurately  proportional  to  the  displacement  of  the  body  from 
its  position  of  rest ;  e.g.  a  rolling  or  pitching  ship,  a  pendulum, 

the  surface  of  a  rough  sea,  the  balance  wheel  of  a  watch  con- 
trolled by  the  hair  spring;  so  in  these  cases  the  bodies  oscillate 

with  s.  H.  M.  when  displaced  from  their  position  of  rest.  Another 

case  of  a  body  which  moves  approximately  with  s.h.  m.  is  the 

piston  of  a  reciprocating  steam  engine;  for  the  flywheel  turns 
with  nearly  constant  speed,  and  the  connecting  rod  takes  the 

place,  though  by  no  means  accurately,  of  the  slot  and  bar  shown 

in  Fig.  92. 

128.  We  will  deal  here  with  one  only  of  the  very  many 

important  properties  of  this  motion. 
Suppose  the  body  has  a  mass  m  (lbs.)  and  that  its  total  travel 

AOB  is  2r  (ft.).     Then  the  force  acting  on  the  body  at  the  point 

MO     v^ 
M  is  as  we  have  shown  m  x  -—-  x  —  (poundals)  where  v  (ft.  per 

sec.)  is  the  speed  of  the  tracing  point  P  in  the  circle.     If  we  call 

MOi  X  ft.,  we  can  write  the  expression  for  the  force  m  x  —x  x 

(poundals). 
Suppose  T  (sees.)  is  the  time  taken  by  the  body  to  do  one 

"  complete  oscillation,"  i.e.  to  move  from  B  to  A  and  back  to  B ; 

we  call  T  the  "  periodic  time "  of  the  oscillation  (see  Art.  4). 
This  is  therefore  the  time  taken  by  P  to  go  once  round  the  circle. 
Hence  we  have  ̂ irr  ̂ vT. 
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If  then  in  any  particular  case  we  are  given  the  ratio  between 

the  force  and  the  displacement,  we  can  immediately  determine 
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For  example,  in  the  case  given  on  page  124  the  ratio  is  — ;  so 

the  value  of  T  in  this  case  is  ̂ tt.  /  -  sees.     It  is  important  to 

notice  that  the  value  of  the  periodic  time  does  not  depend  on  r, 

the  distance  the  body  is  displaced  before  it  is  released ;  in  other 

words,  provided  the  relation  between  force  and  displacement  is 

constant,  the  periodic  time  is  the  same  for  a  large  as  a  small 

oscillation.     This  justifies  the  assertions  made  in  Art.  4. 

Ex.  22.  The  force  on  a  body,  of  mass  3  lbs,,  is  known  to  vary  as  the 
distance  it  is  displaced  from  its  equilibrium  position.  It  is  found  that 
a  force  of  2  lbs.  wt.  will  hold  it  at  a  distance  of  18  ins.  from  this  position. 
Find  its  periodic  time  when  released. 

Miscellaneous  Exercises. 

Ex.  1.  Draw  the  graph  of  s  =  3f  +  5t2,  where  s  is  distance  moved  by 
a  body  in  ft.  and  t  is  time  in  seconds ;  hence  determine  the  velocity  at 

•5  sec.  from  the  start,  and  at  the  instant  when  the  body  has  moved  G  ft. 
Ex.  2.  Kepeat  Ex.  1,  the  connection  between  h  and  t  being  given  by 

the  equation  s  =  3  +  5«^. 

Ex.  3.  A  12  lb.  mass  is  hung  from  the  end  of  a  spiral  spring.  A  force 

of  2  lbs.  wt.  extends  the  spring  by  -3  in.  Find  the  time  of  vibration  of  the 
12  lb.  mass. 

Ex.  4.  A  skater  describes  a  circle  of  50  ft.  radius  at  a  speed  of  20  ft. 
per  sec.     At  what  angle  must  he  lean  inwards  ? 

Ex.  6.  A  motor  car  is  running  over  a  hump-backed  bridge,  whose  upper 
surface  is  part  of  a  circle  of  radius  50  ft.  Find  the  speed  of  the  car  at 
which  the  wheels  just  lift  off  the  road  at  the  top  of  the  arch. 

A.  15 
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Ex.  6.  A  string  4  ft.  long  has  one  end  attached  to  a  fixed  point  and 

carries  a  weight  at  the  other.  The  weight  is  moving  round  in  a  horizontal 

circle  such  that  the  string  has  a  constant  inclination  of  20°  to  the  vertical. 
Determine  the  speed  at  which  the  weight  moveau 

Ex.  7.  If  the  coefficient  of  friction  of  tyres  on  a  greasy  road  is  -2,  what 
is  the  greatest  speed  at  which  a  corner  (radius  50  ft.)  can  be  taken  just  to 
avoid  skidding  ? 

Ex.  8.  Taking  the  earth  as  a  sphere  of  4000  miles  radius,  calculate 
the  reduction  in  weight  of  a  pound  at  the  equator  in  consequence  of  the 

earth's  rotation. 

Ex.  9.  A  train  of  mass  125  tons  is  started  from  rest  by  an  engine 

of  mass  100  tons.  At  the  end  of  0,  4,  8,  12,  etc.  sees,  from  the  start  the 

speed  is  observed  to  be  0,  1-4,  3-6,  6-3,  9*4,  12-0  and  13  ft.  per  sec.  re- 
spectively. Draw  the  velocity-time  graph,  and  from  it  deduce  the  accelera- 

tion of  the  train  16  sees,  after  the  start.  Hence  find  the  tractive  force  on 
the  train  at  this  instant. 

Ex.  lO.  From  the  velocity-time  curve  of  Ex.  9,  find  by  the  method  of 
Art.  11^ the  distance  run  in  the  first  16  sees. 

Ex.  11.  A  moving  body  of  mass  2  lbs.  is  brought  to  rest,  the  speeds  at 

the  beginning  of  successive  seconds  being  50,  34-3,  23-6,  15*5,  9*4,  4*9  and 
1-6  ft.  per  sec.  Draw  the  velocity-time  curve,  and  find  approximately  the 
time  spent  in  coming  to  rest  and  the  retarding  force  at  the  end  of  the 
4th  second. 

Ex.  12.  From  the  velocity-time  curve  of  Ex.  11,  find  by  the  method  of 
Art.  118  the  distance  run  by  the  body  in  coming  to  rest. 

Ex.  13.  A  stone  of  mass  -5  lb.  is  whirled  round  in  a  vertical  circle 
of  radius  18  ins.,  so  that  its  speed  at  the  highest  point  is  10  ft.  per  sec. 

Find  the  tension  of  the  string.  If  no  energy  is  lost  or  gained  in  traversing 
the  circle,  find  the  velocity  at  the  lowest  point  and  the  corresponding  tension 
of  the  string. 

Ex.  14.  A  truck  of  mass  4  tons  moves  at  the  rate  of  60  miles  an  hour 

on  a  curve  of  700  ft.  radius ;  if  the  outer  rail  is  not  super-elevated,  find 
the  lateral  pressure  between  the  flanges  of  the  wheels  and  the  outer  rail. 

Ex.  15.  A  body  of  mass  200  lbs.  is  acted  on  by  a  resultant  force  which 
varies  with  the  distance  of  the  body  from  a  certain  point  A  ;  the  force  at  a 

distance  0,  1,  2,  3,  etc.  ft.  from  A  being  25,  26,  26,  24-8,  22-7,  20,  16*4,  11-6, 
7,  3,  0  lbs.  wt.     Draw  the  force-distance  curve  (1  in.  =  2  ft.,  1  in.  =  5  lbs.  wt.) 
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and  find  the  work  done  on  the  body  while  it  moves  7  ft.  from  the  point,  in 
the  same  direction  as  the  resultant  force  acting  on  it. 

If  the  body  passed  ̂   at  a  speed  of  4  ft.  per  sec,  calculate  its  velocity 
when  it  has  moved  7  ft.  from  A. 

Ex.  16.  An  electric  tram-car  weighs  6  tons.  In  starting  from  rest,  the 
motor  exerts  a  force  which  at  the  beginning  of  successive  5  sees,  has  the 
values  600,  580,  520,  420,  250,  150,  150  lbs.  wt.  Plot  the  force-time  curve 
(scales  1  in.  =  5  sees.,  1  in.  =  100  lbs.  wt.).  The  car  was  found  to  have 
constant  speed  after  25  sees,  from  starting.  Find  the  retarding  force  of 
friction  at  this  speed.  Assuming  that  this  frictional  resistance  has 
remained  constant  throughout,  determine  by  means  of  the  area  under  the 
curve  the  momentum  of  the  car  after  25  sees,  from  starting,  and  hence  its 

Ex.  17.  Steam  is  shut  off  a  train  running  at  60  miles  an  hour  on 

the  level,  and  the  velocity  at  any  time,  t  sees.,  later  is  given  by  the  expres- 
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1  in.  =  100  sees.,  1  in.  =  10  ft.  per  sec).  By  determining  areas  under  the 
curve,  find  the  distances  run  in  100,  and  600  sees.,  and  when  the  speed  has 
dropped  to  30  miles  an  hour  and  to  zero. 

Ex.  18.  From  the  velocity-time  curve  of  Ex.  17,  find  the  acceleration 
at  times  «  =  100  and  «  =  600  sees.  Hence  find  the  values  of  the  frictional 

resistances,  in  lbs.  wt.  per  ton,  opposing  the  motion  of  the  train  at  those 
instants.  Hence  determine  the  value  of  the  constants  a  and  h  in  the 

expression  a  +  hV'^  lbs.  wt.  per  ton  for  the  frictional  resistance,  V  being 
expressed  in  miles  an  hour.  Verify  the  suitability  of  this  form  of  expression 
by  calculating  from  it  the  acceleration  at  30  miles  an  hour  and  checking 

the  result  against  the  acceleration  at  the  corresponding  point  of  the  velocity- 
time  curve. 

Ex.  19.  H.M.S.  "Drake,"  whose  mass  is  14000  tons,  at  a  certain  instant 
is  moving  at  a  speed  of  3  ft.  per  sec,  and  her  propellers  are  exerting  6200  h.p., 
which  remains  constant.  Determine  as  in  Art.  118  her  speed  and  distance 
run  by  the  end  of  10,  20  and  30  sees.,  neglecting  frictional  resistances. 

(Take  as  scales  for  velocity-time  curve  1  in.  =5  sees,  and  1  in.  =  2  ft. 
per  sec.) 

Ex.  20.  From  the  velocity-time  curve  of  Ex.  19  determine  the  accele- 
ration at  times  4  sees,  and  25  sees,  and  hence  deduce  the  propeller  thrusts  at 

those  times. 

15—2 



APPENDIX   ON   APPARATUS 

There  is  no  need  to  describe  the  trolley  and  plane  which  is 

used  for  the  majority  of  the  experiments,  as  it  is  listed  by  many 
makers  of  scientific  instruments  in  different  designs  of  varying 

degrees  of  merit.  Although  less  skill  is  required  to  manipulate 
one  of  the  more  highly  finished  sets  with  metal  bed,  etc.,  excellent 

results  can  be  achieved  with  a  very  simple  form  if  it  is  furnished 

with  a  satisfactory  trigger  to  release  the  trolley  as  the  vibrating 

spring  makes  its  first  passage  across  the  centre  line. 

In  order  to  assist  the  acquisition  of  concrete  ideas  "of  velocity 
and  acceleration  at  an  early  stage  it  is  convenient  to  fit  a  speedo- 

meter to  the  trolley,  for  a  few  preliminary  experiments.  This 

can  be  done  by  using  a  hand  tachometer  fitted  with  a  rubber  disc 

for  measuring  linear  speeds ;  it  can  be  fixpd,  by  a  bracket  on  the 
end  of  the  trolley,  in  a  vertical  position  so  that  the  disc  runs  on 
the  vertical  edge  of  the  plane,  held  against  it  by  a  spring  from 
the  trolley.  If  the  scale  of  the  tachometer  is  uniform,  the  needle 

will  be  seen  to  move  with  uniform  angular  velocity  when  the 
acceleration  is  constant ;  and  the  final  velocity  can  be  read  after 

the  applied  force  has  ceased  to  act,  even  if  the  tachometer  is  not 

dead-beat.  But  it  is  not  easy  to  ensure  that  a  constant  slope  of 
the  plane  will  give  a  constant  speed,  and  this  slope  has  usually 
to  be  changed  for  different  loads  on  the  trolley;  the  effective 
inertia  of  the  mechanism  is  also  considerable  compared  with  the 

mass  of  a  trolley.  It  is,  therefore,  preferable  to  employ  ver}^ 
large  loads,  and  to  use  a  separate  machine  which  can  be  made 

satisfactorily  by  fixing  a  board   on  the  axles  of   two  pairs  of 
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perambulator  wheels  about  1 4  in.  in  diameter ;  the  pupil  sits  on 
this  board,  and  reads  a  speedometer  driven  by  a  thin  cord  from  a 

pulley  jQxed  on  one  of  the  wheels,  like  the  belt  pulley  on  a  motor- 
bicycle.  The  machine  is  drawn  forward  by  a  string  which  passes 

under  a  pulley  fixed  to  a  wall  and  then  over  a  pulley  fixed  to  the 
ceiling,  carrying  a  weight  sufficient  to  overcome  friction  (about 
2  lbs.  wt,),  and,  say  4  ft.  lower,  another  weight  to  produce 
acceleration  (say  3  lbs.).  Thin  string  and  light  pulleys  are  of 
course  sufficient  for  these  small  forces.  The  string  should  be 

attached  to  a  spring  balance  fixed  to  the  machine,  so  that  the 

boy  can  observe  the  tractive  force  and  the  frictional  resistance 

(the  latter  in  the  interval  between  the  two  weights  reaching  the 

floor).  If  the  duration  of  runs  from  rest  of  various  lengths  is 

measured  with  a  stop-watch,  these  times  will  be  approximately 
in  the  same  proportion  as  the  final  speeds  attained  and  the 
acceleration  corresponding  to  an  observed  tractive  force  can  be 

calculated ;  the  equations  F  —  ma,  Fs  =  ̂   mv^  can  then  be  verified. 
There  is  no  doubt  that  this  experiment  is  more  illuminating  to 
the  immature  mind  than  a  great  deal  of  manipulation  of  delicate 

apparatus,  in  which  the  forces  called  into  play  seem  to  him 
insignificant. 

Of  the  same  order  is  an  experiment  to  illustrate  the  First 

Law,  by  laying  four  or  five  lead  pencils  on  the  floor,  parallel  to 
one  another  and  a  few  inclies  apart,  with  a  board  on  them  ;  a  boy 

who  stands  on  this  board  and  attemps  a  long  jump  at  right 
angles  to  the  pencils  will  realise  the  need  of  a  horizontal  reaction 

from  the  ground  to  set  him  in  motion  horizontally. 

Another  useful  experiment  illustrates  the  effect  of  reducing 
the  radius  of  gyration  of  a  rotating  body,  but  this  needs  a  special 
piece  of  apparatus  consisting  of  a  circular  board  a  foot  in 

diameter  supported  on  a  circular  ring  of  bicycle  balls  near  its 

circumference,  which  balls  rest  in  a  circular  ball-race  in  a  base- 

board. The  boy  stands  upright  on  this  turn-table  with  his  arms 
stretched  out  horizontally  and  a  4  lb.  weight  in  each  hand,  and 
is  set  to  rotate  slowly;  if  he  then  bends  his  arms  so  that  the 
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weights  are  brought  towards  his  shoulders,  his  speed  of  rotation 

will  increase,  but  can  be  reduced  at  will  by  increasing  his  radius 

of  gyration  again. 
Although  the  apparatus  described  on  page  158  is  best  adapted 

for  explaining  the  principles  involved,  accurate  experimental 

results  can  be  produced  with  less  care  by  using  the  following 

form.  Take  a  piece  of  clock-spring  about  12  in.  long;  bend  it 
into  a  circle  so  that  the  ends  overlap  about  half  an  inch ; 

clamp  these  ends  firmly  on  the  vertical  end  face  of  a  trolley, 
so  that  the  spring  stands  out  in  a  horizontal  circle,  forming 

a  spring  buffer.  It  will  be  found  that  the  loss  of  energy  in  a 

collision  with  a  trolley  at  rest  is  inappreciable ;  the  only  points 
in  manipulation  which  demand  care  are  the  sloping  of  the 

plane  for  constant  speed  and  the  synchronising  of  the  vibrating 
springs. 



DESCRIPTIVE    QUESTIONS. 

1.  Describe  an  experimental  method  by  which  the  displacement  of  a 

trolley  during  one-eighth  of  a  second  can  be  determined,  when  you  are 
provided  with  a  watch  which  only  records  seconds. 

2.  Define  Uniform  Speed.  How  would  you  test  whether  (1)  a  motor- 
car, (2)  a  trolley,  was  moving  with  uniform  speed? 

3.  A  railway  train  is  slowing  down  as  it  enters  a  station ;  explain  fully 

what  you  mean  by  ' '  its  velocity  five  seconds  before  it  stops." 

4.  You  are  given  the  distance-time  diagram  for  a  body's  motion ;  how 
would  you  determine  whether  the  speed  was  uniform  during  any  period,  and 
the  value  of  that  uniform  speed  ? 

5.  Give  instances  from  common  life,  other  than  those  mentioned  in  the 

text,  of  the  effect  of  inertia,  e.g.  carpet-beating. 

6.  State  Newton's  First  Law  of  Motion.  Why  do  you  behave  it  to  be 
true? 

7.  Define  Force,  and  show  how  the  definition  follows  from  Newton's 
first  law. 

8.  Describe  an  experiment  to  show  that  the  method  of  measuring  forces 
used  in  Statics,  by  the  pull  of  a  string  carrying  a  weight,  is  not  suitable  in 
all  cases  in  Dynamics ;  how  far  is  it  safe  to  use  this  method  1 

0.  Describe  fully  an  experiment  to  show  that  when  a  body  moves  from 
rest  under  a  constant  force,  its  velocity  at  any  instant  is  proportional  to  the 
time  elapsed  from  the  start. 

10.  What  do  you  mean  by  Uniform  Acceleration  ?  If  a  motor-car  had 
a  uniform  acceleration,  how  would  the  needle  of  the  speedometer  move  over 
the  dial? 

11.  Describe  fully  an  experiment  which  shows  that  if  a  body  moves 
under  a  constant  force,  its  average  velocity  during  any  interval  is  half  the 
sum  of  its  velocities  at  the  beginning  and  end  of  the  interval. 

12.  If  you  were  given  a  tracing  of  the  motion  of  a  body,  how  would  you 
determine  from  it  whether  the  acceleration  was  uniform? 
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13.  How  can  you  prove  that  all  bodies,  whatever  their  weight,  have  the 
same  uniform  acceleration  when  falling  freely  ? 

14.  How  can  you  determine  by  direct  experiment  the  acceleration  of  a 
body  falling  freely  ? 

15.  Describe  a  method  of  determining  the  periodic  time  of  a  short 

pendulum. 

16.  How  do  we  know  that  a  pendulum  has  the  same  periodic  time 
whether  its  swing  is  short  or  very  short  ? 

17.  Describe  an  experiment  to  show  that  a  body  has  a  uniform  retarda- 
tion when  its  motion  is  opposed  by  a  constant  force. 

18.  Prove  that  a  body  thrown  vertically  upwards  will  return  to  its 

starting  point  with  the  same  speed  as  it  started  with,  if  the  air  resistance  is 
neglected. 

19.  A  trolley  runs  down  an  inclined  plane;  describe  how  you  can 
determine  without  calculation  the  resultant  force  on  the  trolley  along  the 

plane,  including  the  frictional  resistance. 

20.  Describe  an  experiment  to  show  that  the  acceleration  of  a  body  is 
proportional  to  the  force  acting  on  it. 

21.  Prove  that  the  forces  needed  to  produce  the  same  acceleration  in 
different  bodies  made  of  the  same  material  are  in  the  same  proportion  as  the 
quantities  of  this  material  in  the  bodies. 

22.  How  would  you  compare  the  quantities  of  salt  in  two  pots  of  salt- 
and-water  which  were  known  to  be  of  different  strengths  ? 

23.  How  are  the  respective  quantities  in  consignments  of  the  following 
materials  determined :  coal,  petroleum,  compressed  hydrogen,  treacle,  gold, 
diamonds,  sulphuric  acid,  radium  ? 

24.  How  can  you  test  whether  the  masses  of  two  bodies  made  of 
different  materials  are  equal? 

25.  How  can  you  prove  that  the  masses  of  two  bodies  are  in  the  same 
proportion  as  their  weights  ? 

26.  How  does  the  mass  of  a  body  differ  from  its  weight  ? 

27.  Can  you  say  that  the  mass  of  a  body  is  greater  or  less  than  its 
weight  ?    If  not,  explain  why  it  is  impossible  to  compare  these  quantities. 

28.  Explain  fully  what  is  meant  by  the  statement  "the  mass  of  this 

body  is  6-5  lbs." 
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29.  Define  the  kinetic  unit  of  force. 

30.  Show  that  the  value  in  poundals  of  the  force  acting  on  a  body  is 
equal  to  the  product  of  its  mass  in  pounds  and  its  acceleration  in  ft.  per  sec. 
per  sec. 

31.  How  is  the  kinetic  unit  of  force  related  to  the  unit  of  force 

generally  used  in  statics?  Explain  how  you  get  the  relation  between 
them. 

32.  What  do  you  mean  by  resolving  a  displacement  into  two  others  in 

given  directions  ? 

33.  Prove  that  if  a  body  moves  with  uniform  velocity  relative  to  a 
second  body  which  itself  has  a  uniform  velocity  in  another  direction,  the 
former  actually  moves  with  uniform  velocity. 

34.  Prove  that  if  a  body  has  simultaneously  two  uniform  velocities 
represented  by  two  sides  of  a  triangle  taken  in  order,  its  actual  velocity  is 
represented  by  tbe  third  side. 

35.  What  do  you  mean  by  the  vertical  component  of  the  velocity  of  a 
projectile  at  a  given  instant  ? 

36.  A  body  alters  its  velocity,  from  one  known  value  to  another ;  how 
can  you  determine  the  change  which  has  taken  place  in  its  velocity  ? 

37.  Describe  an  experiment  to  show  that  the  acceleration  of  a  body 

falling  freely  is  not  affected  by  any  initial  horizontal  velocity. 

38.  Describe  an  experiment  to  show  that  the  velocity  of  a  body  in  any 
direction  is  not  affected  by  a  force  acting  on  the  body  at  right  angles  to  that 
direction. 

39.  A  stone  is  projected  at  a  known  elevation  and  with  a  known  speed; 
describe  how  you  can  determine  its  position  at  any  subsequent  instant. 

40.  A  stone  is  projected  at  a  known  elevation  and  with  a  known  speed ; 
how  can  you  determine  its  velocity  at  any  subsequent  instant  ? 

41.  State  Newton's  Second  Law  of  Motion. 

42.  How  does  Newton's  second  law  justify  us  in  calculating  the  motion 
of  a  body  acted  on  by  several  constant  forces  as  though  only  a  single 
resultant  force  acted  on  it  ? 

43.  Explain  how  the  fact  that  we  always  get  the  same  result  in  an 
experiment  with  a  trolley,  whatever  time  of  day  we  repeat  it,  shows  that 
each  force  acting  on  a  body  produces  its  result  independent  of  any  other 
force  that  may  be  acting  on  the  body. 
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44.  When  does  a  force  do  work  ?  Does  the  spring  of  a  watch  do  more 
or  less  work  when  it  is  in  the  pocket  of  a  man  walking  uphill?  Does  a 
locomotive  do  more  work  when  it  goes  a  mile  up  an  incline  than  when  it 

goes  the  same  distance  down  an  incline  ?  Does  the  engine  of  a  steamer  do 
more  work  when  the  steamer  goes  a  mile  up  stream  than  when  it  goes  a 
mile  down  stream  ?     Give  your  reasons  for  each  answer. 

45.  Obtain  the  relation  between  a  ft. -lb.  and  a  foot-poundal. 

46.  Show  that  the  work  done  in  pulling  a  body  up  a  frictionless  incline 
does  not  depend  on  the  gradient,  but  only  on  the  vertical  height  through 
which  the  body  is  raised. 

47.  Explain  fully  why  less  work  is  done  in  pulling  than  in  pushing  a 
roller  across  a  soft  lawn. 

48.  Explain  the  disadvantage  of  using  a  short  rope  when  towing  a  boat 
from  the  bank. 

49.  State  the  laws  relating  to  friction  between  dry  solids,  and  describe 

methods  by  which  they  can  be  roughly  verified. 

50.  What  is  the  meaning  of  "coefficient  of  sliding  friction"? 

51.  A  solid  body  is  sliding  on  a  rough  inclined  plane;  explain  how 
the  frictional  resistance  to  motion  can  be  calculated  when  the  coefficient  of 

friction  is  known. 

52.  Explain  why  it  is  advisable  not  to  apply  the  brakes  to  a  moving 
vehicle  to  such  an  extent  as  to  lock  the  wheels. 

53.  Discuss  the  advantage  of  loading  the  driving  wheels  of  a  locomotive 

and  of  coupling  the  wheels. 

54.  Why  are  continuous  brakes  (i.e.  brakes  on  every  wheel  throughout 
the  train)  fitted  to  passenger  trains  ? 

55.  Explain  why  the  tractive  force  needed  for  a  carriage  is  reduced  by 
having  large  wheels  and  small  axles. 

56.  Define  Power  and  Horse-power. 

57.  Explain  why  it  is  necessary  to  have  a  considerable  tension  in  the 

"slack"  side  of  a  belt  used  to  transmit  power. 

58.  Describe  the  method  of  measuring  the  horse-power  of  a  motor  by  a 
rope  brake. 

59.  Prove  that  the  work  done  on  a  body  during  any  displacement  is 

represented  by  the  area  bounded  by  the  ordinates  to  the  force-displacement 
curve  through  the  points  representing  the  initial  and  final  positions,  the 
curve  and  the  horizontal  axis. 
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60.  What  do  you  mean  by  an  Indicator  Diagram  for  a  steam  engine  ? 

61.  Describe  the  method  of  taking  an  indicator  diagram,  and  of  calcu- 
lating from  it  the  mean  effective  pressure. 

62.  What  do  you  mean  by  the  average  value  of  a  force  which  changes 
with  the  position  of  the  body  on  which  it  acts  ? 

63.  Explain  the  term  "mean  effective  pressure." 

64.  What  do  you  mean  by  Indicated  Horse-power ;  how  does  it  depend 
on  the  dimensions  of  the  cylinder,  the  mean  effective  pressure,  etc. ;  why  is 

its  value  greater  than  that  of  the  brake  horse-power  ? 

65.  Define  Energy,  and  give  examples. 

66.  State  the  law  of  conservation  of  energy.  Give  an  example  to 
illustrate  it. 

67.  What  is  the  meaning  and  value  of  Joule's  equivalent?  What  do 
you  mean  by  a  British  thermal  unit  ? 

68.  Distinguish  between  Potential  and  Kinetic  energy.  Illustrate  the 
difference  by  considering  a  bent  bow  fitted  with  an  arrow  ready  to  be  shot 
vertically  upwards,  and  the  subsequent  changes  of  energy. 

69.  Obtain  by  means  of  the  Second  Law  of  Motion  an  expression  for 
the  kinetic  energy  of  a  body  of  mass  m  moving  at  a  speed  v,  and  state  the 
units  involved. 

70.  Describe  an  experimental  method  of  verifying  the  expression  for 
the  kinetic  energy  of  a  body. 

71.  A  weight  is  hung  by  a  spiral  spring  and  oscillates  vertically ;  show 

how  the  kinetic  energy  of  the  weight  at  any  given  distance  from  its 

equilibrium  position  can  be  determined  by  measuring  an  area  on  its  force- 
displacement  diagram. 

72.  Give  instances  of  the  storage  of  energy. 

73.  Explain  fully  why  it  is  essential  for  smooth  running  to  fit  a 
flywheel  in  a  motor  car. 

74.  Define  the  radius  of  gyration  of  a  flywheel. 

75.  Describe  an  experimental  method  of  measuring  the  radius  of 

gyration  of  a  flywheel  mounted  in  bearings  whose  friction  we  may  neglect. 

76.  Describe  a  method  of  taking  into  account  the  effect  of  bearing 
friction  in  determining  by  experiment  the  radius  of  gyration  of  a  flywheel. 
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77.  State  Newton's  Third  Law  of  Motion. 

78.  Assuming  the  truth  of  the  Third  Law  of  Motion,  show  that  the 
stronger  team  in  a  tug-of-war  can  pull  the  weaker  over  the  line  without 
pulling  the  rope  harder  than  the  weaker  teafii  is  doing.  On  what  body  is 
the  winning  team  exerting  a  greater  force  than  that  exerted  by  the  losers  ? 

79.  Describe  an  arrangement  by  which  we  can  study  the  motion  of  two 
bodies  which  exert  a  force  on  one  another,  but  whose  motion  is  not  affected 

by  any  forces  other  than  their  mutual  action  and  reaction.  What  is  found 
to  be  the  most  suitable  way  to  measure  the  quantity  of  motion  produced  in 
each  body  by  this  force ;  why  are  velocity  and  kinetic  energy  unsuitable 
measures  of  the  quantity  of  motion  in  problems  of  this  kind  ? 

80.  Define  the  momentum  of  a  body. 

81.  Show  from  the  Second  Law  of  Motion  that  the  change  of  momentum 

in  a  body  under  the  action  of  a  constant  force  is  measured  by  the  product  of 
the  numbers  of  units  in  the  acting  force  and  the  time  of  action. 

82.  Show  from  the  Third  Law  of  Motion  and  the  result  of  Ex.  81  that 

there  is  the  same  change  of  momentum  in  each  of  two  bodies  which  act  on 
one  another  with  constant  force. 

83.  State  the  principle  of  Conservation  of  Momentum,  and  describe  one 
experiment  to  verify  it. 

84.  State  the  two  most  usual  methods  of  determining  the  average 

value  of  a  variable  force  acting  on  a  body.  Would  you  expect  them  to  give 
the  same  result  ? 

85.  Give  an  explanation  of  the  pressure  exerted  by  the  wind  on  the  sails 
of  a  square-rigged  ship  running  before  the  wind. 

86.  Why  cannot  an  undershot  water  wheel  extract  all  the  kinetic  energy 
from  the  stream  of  water  ? 

87.  Explain  why  a  kite  can  be  kept  at  rest  in  the  air  although  both  its 
weight  and  the  string  pull  it  downwards. 

88.  Explain,  without  calculations,  why  it  is  possible  for  a  sailing  boat 
to  travel  faster  than  the  wind. 

89.  Describe  the  construction  of  a  de  Laval  steam  turbine. 

90.  Explain  in  general  terms  why  a  turbine  can  extract  a  greater  pro- 
portion of  the  energy  of  the  jet  than  can  an  undershot  water  wheel. 
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91.  Describe  an  experiment  to  demonstrate  the  reaction  on  a  pipe 
through  which  water  flows,  when  the  pipe  causes  a  change  in  the  direction 
of  the  momentum  of  the  water. 

92.  If  water  flows  through  a  straight  pipe  whose  bore  gets  smaller,  how 
does  the  velocity  change  ?  Does  a  pound  of  water  possess  greater  or  less 
momentum  after  passing  the  constriction?  Whence  comes  the  force  needed 

to  produce  this  change  of  momentum  ?  Is  the  force  of  fluid  pressure  on  the 

pipe  from  broader  to  narrower  part,  or  the  opposite  way  ?  If  the  pipe  widens 

out  again  to  its'  original  bore  at  a  later  point,  will  there  be  any  resultant 
force  on  the  pipe  ?     Will  the  fluid  pressure  recover  its  former  value  ? 

93.  Describe  one  toy  reaction-motor. 

94.  Describe  the  jet  method  of  propulsion,  as  applied  to  H.M.S. 

"  Waterwitch."     Why  was  it  not  adopted  for  other  ships? 

95.  Give  an  explanation  of  the  action  of  a  screw  propeller. 

96.  Prove  that  the  gradient  of  the  tangent  to  a  distance-time  curve 
measures  the  velocity. 

97.  Prove  that  the  gradient  of  the  tangent  to  a  velocity-time  curve 
measures  the  acceleration. 

98.  Given  the  mass  of  a  body,  and  its  distance-time  curve,  explain  how 
you  can  determine  the  value  of  the  resultant  force  on  it  (1)  at  any  instant, 
(2)  at  any  distance. 

99.  throve  that  if  the  average  velocity  of  a  body  during  successive  equal 
intervals  of  time  increases  by  the  same  amount,  the  acceleration  is 
uniform. 

100.  Prove  that  in  uniform  acceleration  the  average  velocity  during 
any  interval  of  time  is  the  same  as  the  velocity  at  the  middle  of  that 
instant. 

101.  Prove  that  the  change  of  distance  of  a  body  from  a  fixed  point 

during  any  time-interval  is  measured  by  the  area  between  the  velocity-time 
curve,  the  ordinates  corresponding  to  the  beginning  and  end  of  the  time- 
interval,  and  the  time-axis. 

102.  What  physical  quantities  are  represented  by  an  area  on  (1)  a 

velocity-time  curve,  (2)  a  force-time  curve,  (3)  an  acceleration-time  curve, 
(4)  a  force-distance  curve  ? 

103.  Establish  the  equation  v.2  =  v^-\-at  for  uniform  acceleration. 

104.  Establish  the  equation  s=zv^t-\-^at'^  for  uniform  acceleration. 
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105.  Establish  the  equation  V'^=v^-it2as  for  uniform  acceleration. 

106.  Prove  that  when  a  body  moves  in  a  circular  path  at  constant  speed, 

its  acceleration  is  —  towards  the  centre. r 

-^  107.    A  body  moving  in  a  circle  is  said  to  exert  centrifugal  force ;  what 
does  this  force  act  on  ? 

108.  Why  are  we  justified  in  stating  that  the  resultant  of  the  forces 

acting  on  an  extended  body,  which  moves  at  constant  speed  in  a  circle,  must 
pass  through  the  centre  of  gravity  of  the  body  ? 

109.  Define  Simple  Harmonic  Motion. 

1  lO.  A  body  moves  with  s.h.m.  ;  what  do  you  mean  by  its  amplitude 
of  motion  and  periodic  time  ? 

111.  Show  that  the  periodic  time  of  a  body  moving  with  s.h.m.  does 

not  depend  on  the  amplitude  of  the  motion. 



ANSWERS   TO   EXAMPLES 

Chapter  I.     Examples. 

3.  Train  80-7,  pigeon  80,  ft.  per  sec.  4.  20-45  m.  p.  h. ;  21-2  ra.  p.  h. ; 
19-7  m.  p.  h.  5.  19-8  m.  p.  h. ;  yes.  6.  26-86,  24,  28-125,  24-49  m.  p.  h.; 
25-76m.p.  h.  ;  yes;  no.       7.    14-1,  19-2  sees.       8.   46-9,  32-4,  41-1  m.  p.  h. 

9.  47,  23-5,  7,  14,  21-3  cm.  per  sec.  lO.  45  m.  p.  h. ;  230  sees. ; 
27-0  m.  p.  h. 

Chapter  I.     Miscellaneous  Exercises. 

1.     4-62,  3-75  ft.  per  sec.  2.     26  miles.  3.     4-09,  1-5  m.  p.  h. 
4.  25,  15,  18-75,  20  m.  p.  h.         5.    3-33  ft.  per  sec.         6.    3-43  m.  p.  h. 
7.     25-6 m. p.  h.         8.    25,133  mi.;  1047  m.  p.  h.         9.    66,000  m.  p.  h. 

lO.     1100  yds.  11.     6  m.  p.  h.         12.     2-27  7o-  13-     4-54  sees. 
14.  4,  3-48 m.  p.  h.     15.    130  revs,  per  min.     16.  27.     17.   8-86  knots; 

10-2  m.  p.  h.  18.    42-4  ft.  per  sec. ;  115-8  m.  p.  h. 

Chapter  II.     Examples. 

3.     94-7  cm.  per  see.  per  sec.  4.     5  m.  p.  h. ;  2  mins. 
5.  8-48  cm.  per  sec.  9.     160  ft.  per  sec;  400ft. 

lO.     8-48cm.  per  sec;  2- 12 cm. per  sec. per  sec.     11.   288 ft. per  sec;  896ft. 
12.     1-25  sec.  ;  23-75  cm.  per  sec  ;  11-85  cm.  per  sec.         13.    1-52,  4-56, 

7-60,  10-64  cm.  per  vib.     14.    1-85,  5-80,  9-45, 13-30, 17-10,  20-90cm.  per  vib. 
15.  No.       16.   2943,  1471-5  cm.  per  sec  ;  4414-5  cm,         17.    16-1,64-4, 

144-9,  257-6,  402-5  ft.     18.    -273  sec      20.    -61  sec.     21.    18*96  ft.  per  sec 
23.    2-045  sees.      24.    146-7,  44  ft.      26.   6-21,  6-21  sees. ;  200  ft.  per  sec 
27.   6*453  ft.  per  sec.  per  sec. 
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Chapter  II.     Miscellaneous  Exercises. 

1.  -733  ft.  per  sec. ;  1  mile.            2.  -0267  sec.             3.    55  yds. 
4.  2mins.;  1-67  miles.                     5.  600  yds.               6.     1*5  miles. 
7.  24560  miles  per  hr.  per  hr,  8.     4*89  ft.  per  sec.  per  sec. 
9.  96-32  ft.  per  sec.        lO.     129-2  ft.  11.     4143ft.        13.     62-5  ft.; 

after  12-5  sees.  14.     3-525  sees.  15.     32-2  ft.  per  sec.  per  sec. 
16.     780  ft.      17.     1  cm.  per  sec.  per  sec. ;  3-5  cm.  per  sec.      18.     326  ft. 
19.  32  ft.  per  sec.  per  sec.  21.  Isec,  2secs.  22.  Highest  point 

80-5  ft.  at  2-23  sees.  23.     -00167  sec.  24.     1-1,  11-3  sees. 
25.     144  ft.;  4  sees. ;  40  ft.  per  sec. ;  64  ft.  per  sec.  26.     The  latter  is 

,^2  times  the  former. 

Chapter  III.     Examples. 

1.     98-1  cm.  per  sec.  per  sec.  2.     2-3 ft.  per  sec.  per  sec. 
4.  1120  lbs.  wt. ;  0 ;  560  lbs.  wt. ;  1085  lbs.  wt.  5.  168  lbs.  wt. ; 

0;  84  lbs.  wt.;  162-8  lbs.  wt.  8.  237,000  dynes.  9.  -536  ft.  per  sec. 
per  sec. ;  32*1  ft.  per  sec.             lO.     4930  pdals ;  153  lbs.  wt. . 

11.     32,120  pdals,  998  lbs.  wt.  12.     21,390  pdals,  664  lbs.  wt. 

13.     5074  pdals,  157-5  lbs.  wt. 

Chapter  III.     Miscellaneous  Exercises. 

1.    400  pdals.        2.    100,000  dynes.      3.    5-36  ft.  per  sec.       4.   1-36  lbs. 
5.  657,000  pdals,  -917  tons  wt.  6.    96  pdals.  7.    48  pdals. 
8.  2240  lbs.  wt.  ;  71,680  pdals  ;  358,400  pdals  ;  1-6  ft.  per  sec.  per  sec. 
9.  -96  ft.  per  sec.  per  sec.  lO.  61,600  lbs.  wt. ;  9-32  sees.,  410-1  ft. ; 

10-8  sees.,  474  ft.  1 1.  6400  pdals,  200  lbs.  wt. ;  7000  pdals,  218-75  lbs.  wt. ; 
5600  pdals,  175  lbs.  wt.  12.  336,000  pdals,  10,500  lbs.  wt. ;  112,000  pdals, 
3500  lbs.  wt.              13.    Former  is  443  times  the  latter.  14.    13,840. 

15.    31-4  m.  p.  h.  16.    800,000  ft.  per  sec.  per  sec. ;  25,000  pdals 
781  lbs.  wt. 

Chapter  IV.     Examples. I 
1.    -846  mi.,  S.  57°  E.      2.    42-7ft.      3.    2-828  mi.  N.  and  2-828  mi.  W. 
4.    6-363  mi.  N.;  -707  mi.  E.  5.    5  414  mi.  6.    8-54  m.  p.  h.; 

•534  mi.  330  yds. ;  3-75  min.;  yes.  8.    4*05  min. ;  -Smi. ;  -54  mi. 

lO.    36°  15'.       11.    15°  57' to  vertical.       13.    32-19  ft.  per  sec.  vertically. 
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14.    25  ft.  per  sec.  at  53°  to  former  road.         15.   22  ft.  per  sec.  at  60°. 
18.    81-52  ft.  per  sec.  at  52°  11'  to  horizontal.  19.    58°  9'. 
20.    62,120  ft.  21.    4160ft.  22.    45° ;  60'.  23.    40-5  ft.  up, 

56-6  ft.  along;  24-8  ft.  up,  169-7  ft.  along.  24.    86-7  ft.  per  sec.  at 
depression  of  64°  18'.         26.    4  ft.  per  sec.  to  E. ;  3  ft.  per  sec.  to  N. ;  yes. 

Chapter  IV.     Miscellaneous  Exercises. 

2.  1230  ft.  3.    16-7  ft.  per  sec. ;  19-24  ft.  per  sec.  at  29°  57'. 
4.  2-5secs.;  3500ft.  5.    13-06  sees.;  -0969  sec. ;  192-7 ft.      6.    622  ft. 
7.  -964  sec. ;  3-7  ft. ;  3-7  ft.  up,  9-2  ft.  along  ;  18-4  ft.  per  sec. 
8.  26-46  ft.  per  sec. ;  S.  11°  E.  0.  N.  21°  48' W.  ;  10-77  m.  p.  h. 

lO.  77-8ffc.  11.  3m.p.  h.;  78-7  sees.;  68-2secs.;  100yds. 
12.  27-7  m.  p.  h.  13.  7-3  ft.  14.  110*8  ft.  per  sec. 
15.  834  yds.           17.  2067,  752  ft.  per  sec. ;  23-5  sees. 
18.    1129  ft.  per  sec.       19.    S.  87°  15' W.,  10-62  mi.  per  day.      20.   3  mi. 
21.    Vertically ;  16  ft.  per  see. ;  1  sec. ;  8-8  ft.  22.    3°  15'  behind  the 

line  ;  no.         23.     7-52  lbs.         24.     241  ft.  per  sec. 

Chapter  V.     Examples. 

2.    1472  million  ergs.      3.    36-06  million  ft.-poundals  ;  1,120,000  ft. -lbs. 
5.    8-73  lbs.  wt.  6.    3-39  lbs.  wt.  7.     -59  lb.  wt.  8.    17-46, 

33-9,  5-9  ft.-lbs.         9.    5  tons  wt. ;  32-2  ft.  per  sec.         12.    5-28  ft.-lbs. 
13.    2960ft.-lbs.       14.    l-121bs.  wt.        19.    480h.p.       20.    778-7h.p. 
23.    -3055  H. p.  24.    -133  H. p.  26.   -145  H.  p.       30.    -057  h.p. 

31.     Isq.  in.  to  2000  ft.-lbs.         32.    5940  ft.-lbs.         33.   30-05  ft.-pdals. 

34.    9-046  sq.  ins. ;  5654  ft.-lbs.  35.    -521  sq.  in. ;  -833  ft.-pdals. 
37.    32-14  H.p. 

Chapter  V.     Miscellaneous  Exercises. 

1.    18  turns;  282-7  ft.;  -19  H.p. ;  -0636  H.p.  2.    754  ft.  per  min. ; 

1-805  H.p.  3.    601bs.  wt.  4.    1509  ft.  per  min. ;  2187  lbs.  wt. 
5.     -303  H.p.  6.    27-1  H.p.  7.    27-4  i.H.  p.  8.    15-15  h.p. 

9.    3-7  sq.  ins.;  60 -8 lbs.  per  sq.  in. ;  1850  ft.-lbs.;  5-6  h.p. 
lO.    11 -67 lbs.  wt.;  2 -43  ft.-lbs.         11.    495,000  ft.-lbs.         12.    -155h.p. 
13.     -25  lb.  wt.         15.    266  lbs.  wt.  ;  94  lbs.  wt.  ;  -354  ;   -75  h.  p. 
16.    628  ft.  per  min.  ;  52 -5 lbs.  wt.        17.    -318  h.p.       18.    373,  557  h.  p. 
19.    53-8  H.p.  20.    15-45  H.p. 
A.  16 
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Chapter  VI.     Examples. 

3.    216ft.-pdal8;  6-71ft.-lbs.;  l-121bs.  wt.  4.    78,750 ergs; 
5250  dynes.  6.    6  sees.  7.    70,300  ftT-pdals;  2184  ft. -lbs. 

9.    345  B.TH.u.  ;  243-5° F.  lO.    38-8ft.  11.    3*72 ft.  per  sec. 
13.  -8,  -44  lbs.  wt.  14.    2 -1  ft.  per  sec.  16.    8-23  lbs.  wt. 
17.  -2936  ft.-pdals  ;  1-71  ft.  per  sec.        19.    30  ft.-pdals  ;  2-93  ft.  per  sec. 
20.  13-16  ft.-pdals  ;  1-94  ft.  per  sec.  21.    150-3,  37-6,  150-3  pdals. 
22.  104ft.  23.  34-36ft.  per  sec;  157ft.  25.  19  million  ft. -pdals. ; 

175-6  tons  wt.  27.    3-54  million  ft.-pdals.  28.    10,530  ft.-pdals. 
29.    3-18  ins.         30.    20-37  million  ft.-pdals.  31.    8270  ft.-pdals. 
32.    2  ft.  10  ins. 

Chapter  VI.     Miscellaneous  Exercises. 

1.    1,150,000 ft. -lbs.;  198 million  ft.-lbs.;  172 lbs.  2.     798° F- 
3.    50-2  lbs.  wt. ;  40-1  ft.  per  sec.  4.    1-37  h.p.  5.   69-3°  F. 
7.    2382B.TH.U.  8.    1403  lbs.  wt.  9.     11,750  lbs.  wt. 

lO.    1-73  X  108  ft.-pdals  ;  57,600  tons  wt.  ("  tons  "  should  be  "lbs."  in  the 
question).      11.    201  tons  wt. ;  1560  ft.      12.    2-31  m.  p.  h.      13.   241  h.  p. 
14.  5-71  B.TH.u.;  4460  ft.-lbs. ;  780-7  ft.-lbs.  15.  1132  ft.  per  sec, 

336,400,000  ft.-pdals.  16.  12-27  ft.  per  sec  ;  140-4  lbs.  wt.  17.  18-32  ft.; 
73-3ft.-lbs. ;  401bs.  wt.        18.     11,880  ft.-lbs.        19.    4-1  ins.       20.    33  ft. 
21.  109.  22.  60,000,  350,000  ft.-pdals.  23.  158  lbs.  wt.; 

9  ft.  2  in.                  24.    111,200  ft.-lbs.;  506  lbs.  wt.  25.  3  ft.  1-7  ins. 

26.  29,100,  34,900  ft.-pdals.  27.  2:1.  28.  10-84 million  ft.-pdals; 
280-5  lbs.  wt.  29.  127  million  ft.-pdals  ;  207-8  r.  p.  ra.  30.  -019, 
50,  ft.-lbs.,  52 -9  H.p.  31.  1-74  ft.  32.  240,  3603  ft.-pdals;  365  ins.; 
1-74  sees.                33.    -96  h.  p.  ;  386  lbs.  wt. 

Chapter  YII.     Examples. 

1.    89-2  cm.  per  sec.  per  sec. ;  53,500  dynes.       2  and  3.    '785  ft.  per  sec. 
per  sec. ;  660  pdals.         4.    2-33  ft.  per  sec.  per  sec.  5.    9-65  ft.  per  sec. 

6.    39-24 cm.  per  sec.  per  sec;  612,000 dynes.  8.    -975  ft.  per  sec. 
per  sec.  up  plane.       9.    2-15  ft.  per  sec  per  sec  down  plane.      lO.    •398  ft. 
per  sec.  per  sec         11.    100  f.  p.  s.  units.  12.    3Q, 420,000  f.  p.  s.  units. 

13.    1-42  ft.  per  sec  14.    2464  f.  p.  s.  units ;  15  m.  p.  h.  15.    No. 
18.  204  lbs.  wt.      19.  19-13  sees.      20.  280-5  yds.      22.  1-61  ft.  per  sec 
23.  33-6  : 1 ;  -42  : 1.  24.    -935  ft.  per  sec  25.    2-78  m.  p.  h. 
27.  2190  ft.  per  sec.  28.  5-6  m.  p.  h. ;  323,800  ft.-pdals. 

29.  600  pdals;  18*6  lbs.  wt.  31.  3890  pdals  ;  162  ft.-pdals;  the  same. 
32.    27-3  f.  p.  s.  units;  17  lbs.  wt. 
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Chapter  VII.     Miscellaneous  Exercises. 

1.    189  tons  wt.  2.    1-6  ft.  per  sec.  backwards  ;  4*04  tons  \vt. 
3.    388 lbs.  wt.        4.    5ft.  Sins.        5.    l-751bs.  wt.         6.  20-9 lbs.  wt. 

7.    9  ft.  per  sec.  8.    7 -28  lbs.  wt.  9.    800  ft.  per  sec. 

'    11.    1420  ft.  per  sec.       12.    128  f.  p.  s.  units  ;  "994  lb.  wt.       13.    494cm. 
per  sec.    14.  2364  lbs.  wt.     15.  14-9  lbs.  wt.;  13-3 lbs.  wt.  at  43° 54' to  pitch. 

16.    382-5 lbs.  wt.     17.  459-llbs.  wt.    18.  -0267 sec.    19.  170-5  tons  wt. 

20.    Av.  speed  =  32 '7  ft.  per  sec. ;  mean  of  initial  and  final  speeds  =  44  ft. 
per  sec.         21.    54,450,  73,160  pdals.         22.    Mx  '1633,  Mx  -1215  pdals  ; 
no;  yes.  23.    2-125  f.  p.  s.  units  ;  -198  ft.-lbs.  24.    212-7  ft. 

25.    144f.p.s.  units,  N.46°E.  26.    -SSm.p.h.  27.     -7065, 
•898,  1  -006  ft.  per  sec.  28.    2650  ft.  per  sec.  29.    4-06  f .  p.  s.  units  ; 

203  pdals  at  6°  6'  with  normal.  30.    216,800  pdals  ;  13,470  lbs.  wt. 

Chapter  VIII.     Examples. 

284-41bs.  wt.        3.    19-4 lbs.  wt.        4.    2-16h.p. 

780sq.  ft.       7.    -2731b.  wt.        8.    212-7  lbs.  wt. 
lO.    42-5 H.P.  12.    -001861b.  wt. 

14.     -00002  lb.  wt. ;  20°. 
15  and  16.    63-1  ft.-lbs.  17.    2820  f.  p.  s.  units.  18.    14-1  pdals. 

19.     -796  H.P.       20.    14,100  ft.-pdals  ;  1833 ft.  per  sec.         21.    &2'6°l^; 
1-25  times.  22.    1 -19 h. p.;  21,150 ft.-pdals  ;  735  ft.  per  sec.  ;  94 °/o  ; 
1-88  times.  24.    182-1  cub.  ft. ;  155,100  f.  p.  s.  units  ;  4815  lbs.  wt.  ; 
11-6  sq.  ft.  (taking  mass  of  1  cub.  ft.  of  sea  water  as  64  lbs.). 

Chapter  VIII.     Miscellaneous  Exercises. 

1.  5000  f.  p.  s.  units  ;  2-59  lbs.  wt.   2.  4503  lbs.  wt.   3.  1154  lbs.  wt. 
4.  72-7  lbs.  wt.       5.  259  lbs.  wt.      6.  96-2  lbs.  wt. ;  7-7h.p. 
7.    -235  ft.  per  sec.  8.    3-66  lbs.  wt.  at  70°  to  jet.  9.  795-6  lbs.  ; 

67-3  m.  p.  h.         lO.    978,  525  lbs.  wt.        11.    -066  lbs.  wt.,  bisecting  angle. 
12.    211-4  H.P.     13.    2-09  lbs.  wt.  ;  67° 42';  1-32 lbs.  wt.     15.    172  sq.  ft. 
16.    4411bs.  wt. ;  83-5m.  p.  h.  17.    469-8  lbs.  wt. ;  7*5  h. p. 

1. 8-4  lbs.  wt. 
2. 

5. 1-28  lbs.  wt. 6, 9. 
23,400  ft.-lbs. 

13. •009791b.  wt. 
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Chapter  IX.     Examples. 

.   1.  4-1,  6-9,  8-1,  5-5,  3-9,  1-1,  -3-4,  ft.  per  sec.       2.  0,  -375  860.  ; 

.•17  sec.  ;  no.    3..  640,  1220,  1760  ft.  per  sec. ;  1800, 1000  ft.  per  sec. ;  no. 

4.  1*5,  1-15,  '708  ft,  per  sec.  per  sec.   5.  72,  -44  ft.  per  sec.  per  sec. 
6.    67lbs.  wt.  7.    -ISeib.  wt.  8.     11-25  ft.  9.     1538  ft.- 

11.    35-1  ft.  13.    41°  42'.  14.    178  lbs.  wt.  15.    1  in  1-5. 
16.    1  in  1-92.  17.    57  lbs.  wt.  18.    9-1  ins.  19.    Inner, 

7605  lbs.  wt.  vertical ;  outer,  9195  lbs.  wt.  vertical,  1260  lbs.  wt.  horizontal. 

20.    8  025  ft.  per  sec.         21.    17*94  ft.  per  sec.         22.    1-66  sees. 

Chapter  IX.     Miscellaneous  Exercises. 

1.    8,  11-36 ft.  per  sec.  2.    3-75,  10 '67  ft.  per  sec.  3.    -43  860. 
4.    13°  57'.     5.    27-4  miles  an  hr.      6.    4  ft.  per  sec.      7.    12-24  m.  p.  h. 
8.    •0034661b.  wt.  9.     -79  ft.  per  sec.  per  sec.  ;  3-07  tons  wt. 

lO.    63  ft.      11.    6-6  sees. -,  10-7  pdals.      12.    113  ft.       13:    -5351b.  wt.; 
17-13  ft.  per  sec.  ;  3-54  lbs.  wt.  14.    3078  lbs.  wt.  15.    154  ft.-lbs. ; 
8-1  ft.  per  sec.  16.    150  lbs.  wt. ;  225,000  f.  p.  s.  units  ;  16-7  m.  p.  h. 
17.  7500,   23,200,   13,800,   23,700  ft. 

(The  equation  is  5^=  23700 +  72500  log  cos  ('^ft.y*)"^-) 
18.  -197,  -073  ft.  per  sec.  per  sec;  13*7,  5-05  lbs.  wt.  per  ton;  a  =  4-9, 

&  = -00475  (but  probable  error  is  large).  19.  8-9,  12-2,  14-8  ft.  per  sec. ; 
64,  170,  305  ft.                 20.     '74,  -25  ft.  per  sec.  per  sec. ;  322,  109  tons  wt. 
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